enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Quadrature of the Parabola - Wikipedia

    en.wikipedia.org/wiki/Quadrature_of_the_Parabola

    Archimedes provides the first attested solution to this problem by focusing specifically on the area bounded by a parabola and a chord. [3] Archimedes gives two proofs of the main theorem: one using abstract mechanics and the other one by pure geometry. In the first proof, Archimedes considers a lever in equilibrium under the action of gravity ...

  3. The Method of Mechanical Theorems - Wikipedia

    en.wikipedia.org/wiki/The_Method_of_Mechanical...

    Archimedes' idea is to use the law of the lever to determine the areas of figures from the known center of mass of other figures. [1]: 8 The simplest example in modern language is the area of the parabola. A modern approach would be to find this area by calculating the integral

  4. On Conoids and Spheroids - Wikipedia

    en.wikipedia.org/wiki/On_Conoids_and_Spheroids

    A page from Archimedes' On Conoids and Spheroids. On Conoids and Spheroids (Ancient Greek: Περὶ κωνοειδέων καὶ σφαιροειδέων) is a surviving work by the Greek mathematician and engineer Archimedes (c. 287 BC – c. 212 BC).

  5. On the Equilibrium of Planes - Wikipedia

    en.wikipedia.org/wiki/On_the_Equilibrium_of_Planes

    The lever and its properties were already well known before the time of Archimedes, and he was not the first to provide an analysis of the principle involved. [5] The earlier Mechanical Problems, once attributed to Aristotle but most likely written by one of his successors, contains a loose proof of the law of the lever without employing the concept of centre of gravity.

  6. Method of exhaustion - Wikipedia

    en.wikipedia.org/wiki/Method_of_exhaustion

    The area bounded by the intersection of a line and a parabola is 4/3 that of the triangle having the same base and height (the quadrature of the parabola); The area of an ellipse is proportional to a rectangle having sides equal to its major and minor axes;

  7. Quadrature (geometry) - Wikipedia

    en.wikipedia.org/wiki/Quadrature_(geometry)

    The area of the surface of a sphere is equal to four times the area of the circle formed by a great circle of this sphere. The area of a segment of a parabola determined by a straight line cutting it is 4/3 the area of a triangle inscribed in this segment. For the proofs of these results, Archimedes used the method of exhaustion attributed to ...

  8. Archimedes Palimpsest - Wikipedia

    en.wikipedia.org/wiki/Archimedes_Palimpsest

    The texts under the forged pictures, as well as previously unreadable texts, were revealed by analyzing images produced by ultraviolet, infrared, visible and raking light, and X-ray. All images and transcriptions are now freely available on the web at the Archimedes Digital Palimpsest under the Creative Commons License CC BY. [10] [11] [12]

  9. On Spirals - Wikipedia

    en.wikipedia.org/wiki/On_Spirals

    Archimedes had already proved as the first proposition of Measurement of a Circle that the area of a circle is equal to a right-angled triangle having the legs' lengths equal to the radius of the circle and the circumference of the circle. So the area of the circle with radius OP is equal to the area of the triangle OPT. [4]