enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gromov's theorem on groups of polynomial growth - Wikipedia

    en.wikipedia.org/wiki/Gromov's_theorem_on_groups...

    The order of growth is then the least degree of any such polynomial function p. A nilpotent group G is a group with a lower central series terminating in the identity subgroup. Gromov's theorem states that a finitely generated group has polynomial growth if and only if it has a nilpotent subgroup that is of finite index.

  3. Growth rate (group theory) - Wikipedia

    en.wikipedia.org/wiki/Growth_rate_(group_theory)

    The free abelian group has a polynomial growth rate of order d. The discrete Heisenberg group has a polynomial growth rate of order 4. This fact is a special case of the general theorem of Hyman Bass and Yves Guivarch that is discussed in the article on Gromov's theorem.

  4. Gromov's theorem - Wikipedia

    en.wikipedia.org/wiki/Gromov's_theorem

    One of Gromov's compactness theorems: Gromov's compactness theorem (geometry) in Riemannian geometry; Gromov's compactness theorem (topology) in symplectic topology; Gromov's Betti number theorem Gromov–Ruh theorem on almost flat manifolds; Gromov's non-squeezing theorem in symplectic geometry; Gromov's theorem on groups of polynomial growth

  5. Geometric group theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_group_theory

    Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, [2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton ...

  6. Gromov–Hausdorff convergence - Wikipedia

    en.wikipedia.org/wiki/Gromov–Hausdorff_convergence

    See Gromov's theorem on groups of polynomial growth. (Also see D. Edwards for an earlier work.) The key ingredient in the proof was the observation that for the Cayley graph of a group with polynomial growth a sequence of rescalings converges in the pointed Gromov–Hausdorff sense.

  7. Tits alternative - Wikipedia

    en.wikipedia.org/wiki/Tits_alternative

    The Tits alternative is an important ingredient [2] in the proof of Gromov's theorem on groups of polynomial growth. In fact the alternative essentially establishes the result for linear groups (it reduces it to the case of solvable groups, which can be dealt with by elementary means).

  8. Grigorchuk group - Wikipedia

    en.wikipedia.org/wiki/Grigorchuk_group

    An important result in the subject is Gromov's theorem on groups of polynomial growth, obtained by Gromov in 1981, which shows that a finitely generated group has polynomial growth if and only if this group has a nilpotent subgroup of finite index.

  9. Mikhael Gromov (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Mikhael_Gromov_(mathematician)

    Gromov's compactness theorem had a deep impact on the field of geometric group theory. He applied it to understand the asymptotic geometry of the word metric of a group of polynomial growth, by taking the limit of well-chosen rescalings of the metric.