Search results
Results from the WOW.Com Content Network
The Koch snowflake (also known as the Koch curve, Koch star, or Koch island [1] [2]) is a fractal curve and one of the earliest fractals to have been described. It is based on the Koch curve, which appeared in a 1904 paper titled "On a Continuous Curve Without Tangents, Constructible from Elementary Geometry" [3] by the Swedish mathematician Helge von Koch.
A snowflake is a single snow crystal that is large enough to fall through the Earth's atmosphere as snow. [1] [2] [3] ...
Sierpiński Carpet - Infinite perimeter and zero area Mandelbrot set at islands The Mandelbrot set: its boundary is a fractal curve with Hausdorff dimension 2. (Note that the colored sections of the image are not actually part of the Mandelbrot Set, but rather they are based on how quickly the function that produces it diverges.)
Three anti-snowflakes arranged in a way that a koch-snowflake forms in between the anti-snowflakes. 1.2619: Koch curve: 3 Koch curves form the Koch snowflake or the anti-snowflake. 1.2619: boundary of Terdragon curve: L-system: same as dragon curve with angle = 30°.
Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to the whole. For instance, a side of the Koch snowflake is both symmetrical and scale-invariant; it can be continually magnified 3x without changing shape. The ...
The snowflakes form as air rises, cools, and condenses, usually around an area of low pressure. Whether or not precipitation remains snow or transitions to rain, freezing rain, sleet, hail or ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
An object whose irregularity is constant over different scales ("self-similarity") is a fractal (examples include the Menger sponge, the Sierpiński gasket, and the Koch curve or snowflake, which is infinitely long yet encloses a finite space and has a fractal dimension of circa 1.2619).