Search results
Results from the WOW.Com Content Network
A research design typically outlines the theories and models underlying a project; the research question(s) of a project; a strategy for gathering data and information; and a strategy for producing answers from the data. [1] A strong research design yields valid answers to research questions while weak designs yield unreliable, imprecise or ...
Repeated measures design: A research design that involves multiple measures of the same variable taken on the same or matched subjects either under different conditions or over two or more time periods. [1] Paired t-test, Wilcoxon signed-rank test
Examples are Spearman’s correlation coefficient, Kendall’s tau, Biserial correlation, and Chi-square analysis. Pearson correlation coefficient. Three important notes should be highlighted with regard to correlation: The presence of outliers can severely bias the correlation coefficient.
The reverse correlation technique is a data driven study method used primarily in psychological and neurophysiological research. [1] This method earned its name from its origins in neurophysiology, where cross-correlations between white noise stimuli and sparsely occurring neuronal spikes could be computed quicker when only computing it for segments preceding the spikes.
Quantitative psychological research findings result from mathematical modeling and statistical estimation or statistical inference. The two types of research differ in the methods employed, rather than the topics they focus on. There are three main types of psychological research: Correlational research; Descriptive research; Experimental research
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [a] The variables may be two columns of a given data set of observations, often called a sample, or two components of a multivariate random variable with a known distribution. [citation needed]
The use of a sequence of experiments, where the design of each may depend on the results of previous experiments, including the possible decision to stop experimenting, is within the scope of sequential analysis, a field that was pioneered [12] by Abraham Wald in the context of sequential tests of statistical hypotheses. [13]