Search results
Results from the WOW.Com Content Network
The average albedo of Earth is about 0.3. [15] This is far higher than for the ocean primarily because of the contribution of clouds. Earth's surface albedo is regularly estimated via Earth observation satellite sensors such as NASA's MODIS instruments on board the Terra and Aqua satellites, and the CERES instrument on the Suomi NPP and JPSS.
The albedo of several types of roofs (lower values means higher temperatures). Reflective surfaces, or ground-based albedo modification (GBAM), is a solar radiation management method of enhancing Earth's albedo (the ability to reflect the visible, infrared, and ultraviolet wavelengths of the Sun, reducing heat transfer to the surface).
The Bond albedo is a value strictly between 0 and 1, as it includes all possible scattered light (but not radiation from the body itself). This is in contrast to other definitions of albedo such as the geometric albedo, which can be above 1. In general, though, the Bond albedo may be greater or smaller than the geometric albedo, depending on ...
The brightness usually refers the object's absolute magnitude, which, in turn, is its apparent magnitude at a distance of one astronomical unit from the Earth and Sun. The phase curve is useful for characterizing an object's regolith (soil) and atmosphere. It is also the basis for computing the geometrical albedo and the Bond albedo of the
An albedometer is an instrument used to measure the albedo (reflecting radiation) of a surface. An albedometer is mostly used to measure the reflectance of earths surface. It is also useful to evaluate thermal effects in buildings and generation capacity with bifacial solar photovoltaic panels. Often it consists of two pyranometers: one facing ...
Mirrors in space (MIS): satellites that are designed to change the amount of solar radiation that impacts the Earth as a form of climate engineering. Since the conception of the idea in 1923, 1929, 1957 and 1978 (Hermann Oberth) and also in the 1980s, space mirrors have mainly been theorized as a way to deflect sunlight to counter global ...
The planet has an albedo that depends on the characteristics of its surface and atmosphere, and therefore only absorbs a fraction of radiation. The planet absorbs the radiation that isn't reflected by the albedo, and heats up. One may assume that the planet radiates energy like a blackbody at some temperature according to the Stefan–Boltzmann ...
The Earth has an albedo of 0.3, meaning that 30% of the solar radiation that hits the planet gets scattered back into space without absorption. The effect of albedo on temperature can be approximated by assuming that the energy absorbed is multiplied by 0.7, but that the planet still radiates as a black body (the latter by definition of ...