enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    The physics convention. Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.

  3. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    However, spherical geometry was not considered a full-fledged non-Euclidean geometry sufficient to resolve the ancient problem of whether the parallel postulate is a logical consequence of the rest of Euclid's axioms of plane geometry, because it requires another axiom to be modified.

  4. Vector fields in cylindrical and spherical coordinates

    en.wikipedia.org/wiki/Vector_fields_in...

    Note: This page uses common physics notation for spherical coordinates, in which is the angle between the z axis and the radius vector connecting the origin to the point in question, while is the angle between the projection of the radius vector onto the x-y plane and the x axis. Several other definitions are in use, and so care must be taken ...

  5. Coordinate system - Wikipedia

    en.wikipedia.org/wiki/Coordinate_system

    The spherical coordinate system is commonly used in physics. It assigns three numbers (known as coordinates) to every point in Euclidean space: radial distance r, polar angle θ , and azimuthal angle φ . The symbol ρ is often used instead of r.

  6. n-sphere - Wikipedia

    en.wikipedia.org/wiki/N-sphere

    As such, the ⁠ ⁠-sphere is the setting for ⁠ ⁠-dimensional spherical geometry. Considered extrinsically, as a hypersurface embedded in ⁠ ( n + 1 ) {\displaystyle (n+1)} ⁠ -dimensional Euclidean space , an ⁠ n {\displaystyle n} ⁠ -sphere is the locus of points at equal distance (the radius ) from a given center point.

  7. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    In spherical geometry, a square is a polygon whose edges are great circle arcs of equal distance, which meet at equal angles. Unlike the square of plane geometry, the angles of such a square are larger than a right angle. Larger spherical squares have larger angles. In hyperbolic geometry, squares with right angles do not exist. Rather, squares ...

  8. Sphere - Wikipedia

    en.wikipedia.org/wiki/Sphere

    Many theorems from classical geometry hold true for spherical geometry as well, but not all do because the sphere fails to satisfy some of classical geometry's postulates, including the parallel postulate. In spherical trigonometry, angles are defined between great circles. Spherical trigonometry differs from ordinary trigonometry in

  9. Polygon - Wikipedia

    en.wikipedia.org/wiki/Polygon

    A spherical polygon is a circuit of arcs of great circles (sides) and vertices on the surface of a sphere. It allows the digon, a polygon having only two sides and two corners, which is impossible in a flat plane. Spherical polygons play an important role in cartography (map making) and in Wythoff's construction of the uniform polyhedra.