Search results
Results from the WOW.Com Content Network
Most state plane zones are based on either a transverse Mercator projection or a Lambert conformal conic projection. The choice between the two map projections is based on the shape of the state and its zones. States that are long in the east–west direction are typically divided into zones that are also long east–west.
Aeronautical chart on Lambert conformal conic projection with standard parallels at 33°N and 45°N. A Lambert conformal conic projection (LCC) is a conic map projection used for aeronautical charts, portions of the State Plane Coordinate System, and many national and regional mapping systems.
Gott, Goldberg and Vanderbei’s double-sided disk map was designed to minimize all six types of map distortions. Not properly "a" map projection because it is on two surfaces instead of one, it consists of two hemispheric equidistant azimuthal projections back-to-back. [5] [6] [7] 1879 Peirce quincuncial: Other Conformal Charles Sanders Peirce
The spherical form of the transverse Mercator projection was one of the seven new projections presented, in 1772, by Johann Heinrich Lambert. [1] [2] (The text is also available in a modern English translation. [3]) Lambert did not name his projections; the name transverse Mercator dates from the second half of the nineteenth century. [4]
The Universal Transverse Mercator (UTM) is a map projection system for assigning coordinates to locations on the surface of the Earth. Like the traditional method of latitude and longitude, it is a horizontal position representation, which means it ignores altitude and treats the earth surface as a perfect ellipsoid. However, it differs from ...
Each projected coordinate system, such as "Universal Transverse Mercator WGS 84 Zone 26N," is defined by a choice of map projection (with specific parameters), a choice of geodetic datum to bind the coordinate system to real locations on the earth, an origin point, and a choice of unit of measure. [2]
Transverse Mercator: central meridian 81°W, scaled 0.9996: 500 km west of (81°W, 0°N) equator, 81°W meridian: meter 6576: SPCS Tennessee Zone NAD 83 (2011) ftUS: GRS 80: NAD 83 (2011 epoch) cartesian (x,y) Lambert Conformal Conic: center 86°W, 34°20'N, standard parallels 35°15'N, 36°25'N: 600 km grid west of center point
For example, a Mercator map printed in a book might have an equatorial width of 13.4 cm corresponding to a globe radius of 2.13 cm and an RF of approximately 1 / 300M (M is used as an abbreviation for 1,000,000 in writing an RF) whereas Mercator's original 1569 map has a width of 198 cm corresponding to a globe radius of 31.5 cm and an ...