Search results
Results from the WOW.Com Content Network
Winogradsky column showing Photoautotrophs in purple and green. Photoautotrophs are organisms that can utilize light energy from sunlight and elements (such as carbon) from inorganic compounds to produce organic materials needed to sustain their own metabolism (i.e. autotrophy).
The following characteristic reactions accompany the growth of A. thiooxidans in the presence of tricalcium phosphate: the layer on the surface of the medium formed by sulfur tends to drop to the bottom, tricalcium phosphate is dissolved by the product of sulfur oxidation, sulfuric acid, giving soluble phosphate and CaSO 4 + 2 H 2 O, and ...
The primary producers can convert the energy in the light (phototroph and photoautotroph) or the energy in inorganic chemical compounds (chemotrophs or chemolithotrophs) to build organic molecules, which is usually accumulated in the form of biomass and will be used as carbon and energy source by other organisms (e.g. heterotrophs and mixotrophs).
For example, most plants are photolithoautotrophic, since they use light as an energy source, water as electron donor, and CO 2 as a carbon source. All animals and fungi are chemoorganoheterotrophic , since they use organic substances both as chemical energy sources and as electron/hydrogen donors and carbon sources.
And after the plantlet develops in vitro, then the ex-planting process can often be very stressful and result in plant death, which isn't a problem for pre-acclimated plantlets grown via photoautotrophic tissue culture (In this context, pre-acclimated refers to plantlets that have developed a cuticle and have been cultivated in an open air ...
Rhodobacter sphaeroides is a kind of purple bacterium; a group of bacteria that can obtain energy through photosynthesis.Its best growth conditions are anaerobic phototrophy (photoheterotrophic and photoautotrophic) and aerobic chemoheterotrophy in the absence of light. [1]
The following two equations are simplified representations of photosynthesis (top) and (one form of) chemosynthesis (bottom): CO 2 + H 2 O + light → CH 2 O + O 2 CO 2 + O 2 + 4 H 2 S → CH 2 O + 4 S + 3 H 2 O. In both cases, the end point is a polymer of reduced carbohydrate, (CH 2 O) n, typically molecules such as glucose or other sugars.
Terrestrial and aquatic phototrophs: plants grow on a fallen log floating in algae-rich water. Phototrophs (from Ancient Greek φῶς, φωτός (phôs, phōtós) 'light' and τροφή (trophḗ) 'nourishment') are organisms that carry out photon capture to produce complex organic compounds (e.g. carbohydrates) and acquire energy.