Search results
Results from the WOW.Com Content Network
For example, the set of real numbers consisting of 0, 1, and all numbers in between is an interval, denoted [0, 1] and called the unit interval; the set of all positive real numbers is an interval, denoted (0, ∞); the set of all real numbers is an interval, denoted (−∞, ∞); and any single real number a is an interval, denoted [a, a].
Sharkovskii also proved the converse theorem: every upper set of the above order is the set of periods for some continuous function from an interval to itself. In fact all such sets of periods are achieved by the family of functions : [,] [,], (, | / |) for [,], except for the empty set of periods which is achieved by :, +.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
[a] Like the set of natural numbers, the set of integers is countably infinite. An integer may be regarded as a real number that can be written without a fractional component . For example, 21, 4, 0, and −2048 are integers, while 9.75, 5 + 1 / 2 , 5/4, and √ 2 are not.
The Golomb topology, [2] or relatively prime integer topology, [6] on the set > of positive integers is obtained by taking as a base the collection of all + with , > and and relatively prime. [2] Equivalently, [ 7 ] the subcollection of such sets with the extra condition b < a {\displaystyle b<a} also forms a base for the topology. [ 6 ]
Counting the empty set as a subset, a set with elements has a total of subsets, and the theorem holds because > for all non-negative integers. Much more significant is Cantor's discovery of an argument that is applicable to any set, and shows that the theorem holds for infinite sets also.
If k 2 + 4 is a quadratic residue modulo p (where p > 2 and p does not divide k 2 + 4), then +, /, and / + can be expressed as integers modulo p, and thus Binet's formula can be expressed over integers modulo p, and thus the Pisano period divides the totient =, since any power (such as ) has period dividing (), as this is the order of the group ...
A natural number in a set that is filtered by a sieve. ... numbers in the center of even rows of ... as the sum of two or more consecutive positive integers. A138591: