enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation.. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor.

  3. Modulo (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Modulo_(mathematics)

    Modulo is a mathematical jargon that was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. [3] Given the integers a, b and n, the expression "a ≡ b (mod n)", pronounced "a is congruent to b modulo n", means that a − b is an integer multiple of n, or equivalently, a and b both share the same remainder when divided by n.

  4. Operators in C and C++ - Wikipedia

    en.wikipedia.org/wiki/Operators_in_C_and_C++

    All the operators (except typeof) listed exist in C++; the column "Included in C", states whether an operator is also present in C. Note that C does not support operator overloading. When not overloaded, for the operators && , || , and , (the comma operator ), there is a sequence point after the evaluation of the first operand.

  5. C mathematical functions - Wikipedia

    en.wikipedia.org/wiki/C_mathematical_functions

    Note that C99 and C++ do not implement complex numbers in a code-compatible way – the latter instead provides the class std:: complex. All operations on complex numbers are defined in the <complex.h> header. As with the real-valued functions, an f or l suffix denotes the float complex or long double complex variant of the function.

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" when reaching a certain value, called the modulus. The modern approach to modular arithmetic was developed by Carl Friedrich Gauss in his book Disquisitiones Arithmeticae , published in 1801.

  7. Residue number system - Wikipedia

    en.wikipedia.org/wiki/Residue_number_system

    Using a residue numeral system for arithmetic operations is also called multi-modular arithmetic. Multi-modular arithmetic is widely used for computation with large integers, typically in linear algebra , because it provides faster computation than with the usual numeral systems, even when the time for converting between numeral systems is ...

  8. Modular exponentiation - Wikipedia

    en.wikipedia.org/wiki/Modular_exponentiation

    A third method drastically reduces the number of operations to perform modular exponentiation, while keeping the same memory footprint as in the previous method. It is a combination of the previous method and a more general principle called exponentiation by squaring (also known as binary exponentiation).

  9. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    The order of operations, that is, the order in which the operations in an expression are usually performed, results from a convention adopted throughout mathematics, science, technology and many computer programming languages. It is summarized as: [2] [5] Parentheses; Exponentiation; Multiplication and division; Addition and subtraction