Search results
Results from the WOW.Com Content Network
A centripetal force (from Latin centrum, "center" and petere, "to seek" [1]) is a force that makes a body follow a curved path.The direction of the centripetal force is always orthogonal to the motion of the body and towards the fixed point of the instantaneous center of curvature of the path.
Artificial gravity, or rotational gravity, is thus the appearance of a centrifugal force in a rotating frame of reference (the transmission of centripetal acceleration via normal force in the non-rotating frame of reference), as opposed to the force experienced in linear acceleration, which by the equivalence principle is indistinguishable from ...
PhET Interactive Simulations is part of the University of Colorado Boulder which is a member of the Association of American Universities. [10] The team changes over time and has about 16 members consisting of professors, post-doctoral students, researchers, education specialists, software engineers (sometimes contractors), educators, and administrative assistants. [11]
According to this equation, the second force F 2 (r) is obtained by scaling the first force and changing its argument, as well as by adding inverse-square and inverse-cube central forces. For comparison, Newton's theorem of revolving orbits corresponds to the case a = 1 and b = 0 , so that r 1 = r 2 .
Next Newton proves his "Theorema II" which shows that if Kepler's second law results, then the force involved must be along the line between the two bodies. In other words, Newton proves what today might be called the "inverse Kepler problem": the orbit characteristics require the force to depend on the inverse square of the distance. [3]: 107
A roller coaster is a machine that uses gravity and inertia to send a train of cars along a winding track. [1] The combination of gravity and inertia, along with g-forces and centripetal acceleration give the body certain sensations as the coaster moves up, down, and around the track.
This force is directed inward, along the direction of the string, and is called a centripetal force. The other ball has the same requirement, but being on the opposite end of the string, requires a centripetal force of the same size, but opposite in direction. See Figure 2.
The force of gravity and the normal force. The resultant force acts as the required centripetal force. The mathematical derivation for the Eötvös effect for motion along the Equator explains the factor 2 in the first term of the Eötvös correction formula. What remains to be explained is the cosine factor.