Search results
Results from the WOW.Com Content Network
The convex regular 4-polytopes can be ordered by size as a measure of 4-dimensional content (hypervolume) for the same radius. Each greater polytope in the sequence is rounder than its predecessor, enclosing more content [ 5 ] within the same radius.
The following table lists some properties of the six convex regular 4-polytopes. The symmetry groups of these 4-polytopes are all Coxeter groups and given in the notation described in that article. The number following the name of the group is the order of the group.
For regular 4-polytopes, this vertex figure is a regular polyhedron. ... Order-4 octahedral honeycomb {3,4,4} {3} {4} 0 {4,4,3} Square tiling honeycomb
Coxeter lists 32 regular compounds of regular 4-polytopes in his book Regular Polytopes. [3] McMullen adds six in his paper New Regular Compounds of 4-Polytopes, in which he also proves that the list is now complete. [4]
Net. In geometry, the 120-cell is the convex regular 4-polytope (four-dimensional analogue of a Platonic solid) with Schläfli symbol {5,3,3}. It is also called a C 120, dodecaplex (short for "dodecahedral complex"), hyperdodecahedron, polydodecahedron, hecatonicosachoron, dodecacontachoron [1] and hecatonicosahedroid.
The three uniform 4-polytopes forms marked with an asterisk, *, have the higher extended pentachoric symmetry, of order 240, [[3,3,3]] because the element corresponding to any element of the underlying 5-cell can be exchanged with one of those corresponding to an element of its dual.
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.
In geometry, the 5-cell is the convex 4-polytope with Schläfli symbol {3,3,3}. It is a 5-vertex four-dimensional object bounded by five tetrahedral cells. It is also known as a C 5, hypertetrahedron, pentachoron, [1] pentatope, pentahedroid, [2] tetrahedral pyramid, or 4-simplex (Coxeter's polytope), [3] the simplest possible convex 4-polytope, and is analogous to the tetrahedron in three ...