Search results
Results from the WOW.Com Content Network
Stable Diffusion is a deep learning, text-to-image model released in 2022 based on diffusion techniques. The generative artificial intelligence technology is the premier product of Stability AI and is considered to be a part of the ongoing artificial intelligence boom .
The Latent Diffusion Model (LDM) [1] is a diffusion model architecture developed by the CompVis (Computer Vision & Learning) [2] group at LMU Munich. [ 3 ] Introduced in 2015, diffusion models (DMs) are trained with the objective of removing successive applications of noise (commonly Gaussian ) on training images.
Computing the square root of 2 (which is roughly 1.41421) is a well-posed problem. Many algorithms solve this problem by starting with an initial approximation x 0 to , for instance x 0 = 1.4, and then computing improved guesses x 1, x 2, etc. One such method is the famous Babylonian method, which is given by x k+1 = (x k + 2/x k)/2.
A 1-bit image of the Statue of David, dithered with Floyd–Steinberg algorithm. Floyd–Steinberg dithering is an image dithering algorithm first published in 1976 by Robert W. Floyd and Louis Steinberg. It is commonly used by image manipulation software.
AUTOMATIC1111 Stable Diffusion Web UI (SD WebUI, A1111, or Automatic1111 [3]) is an open source generative artificial intelligence program that allows users to generate images from a text prompt. [4] It uses Stable Diffusion as the base model for its image capabilities together with a large set of extensions and features to customize its output.
The upwind differencing scheme is a method used in numerical methods in computational fluid dynamics for convection–diffusion problems. This scheme is specific for Peclet number greater than 2 or less than −2
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Additionally, because the location of the dithering patterns always stays the same relative to the display frame, it is less prone to jitter than error-diffusion methods, making it suitable for animations. Because the patterns are more repetitive than error-diffusion method, an image with ordered dithering compresses better.