enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of datasets in computer vision and image processing

    en.wikipedia.org/wiki/List_of_datasets_in...

    Classification, object detection, object localization 2017 [52] M. Kragh et al. Daimler Monocular Pedestrian Detection dataset It is a dataset of pedestrians in urban environments. Pedestrians are box-wise labeled. Labeled part contains 15560 samples with pedestrians and 6744 samples without. Test set contains 21790 images without labels. Images

  3. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  4. Image subtraction - Wikipedia

    en.wikipedia.org/wiki/Image_subtraction

    The complexity of the pre-processing needed before differencing varies with the type of image, but is essential to ensure good subtraction of static features. This is commonly used in fields such as time-domain astronomy (known primarily as difference imaging ) to find objects that fluctuate in brightness or move.

  5. Foreground detection - Wikipedia

    en.wikipedia.org/wiki/Foreground_detection

    Foreground detection is one of the major tasks in the field of computer vision and image processing whose aim is to detect changes in image sequences. Background subtraction is any technique which allows an image's foreground to be extracted for further processing (object recognition etc.).

  6. Outline of object recognition - Wikipedia

    en.wikipedia.org/wiki/Outline_of_object_recognition

    Object recognition – technology in the field of computer vision for finding and identifying objects in an image or video sequence. Humans recognize a multitude of objects in images with little effort, despite the fact that the image of the objects may vary somewhat in different view points, in many different sizes and scales or even when they are translated or rotated.

  7. Viola–Jones object detection framework - Wikipedia

    en.wikipedia.org/wiki/Viola–Jones_object...

    The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [1] [2] It was motivated primarily by the problem of face detection, although it can be adapted to the detection of other object classes. In short, it consists of a sequence of classifiers.

  8. Connected-component labeling - Wikipedia

    en.wikipedia.org/wiki/Connected-component_labeling

    Connected-component matrix is initialized to size of image matrix. A mark is initialized and incremented for every detected object in the image. A counter is initialized to count the number of objects. A row-major scan is started for the entire image. If an object pixel is detected, then following steps are repeated while (Index !=0)

  9. Hessian affine region detector - Wikipedia

    en.wikipedia.org/wiki/Hessian_Affine_region_detector

    The Hessian affine region detector is a feature detector used in the fields of computer vision and image analysis. Like other feature detectors, the Hessian affine detector is typically used as a preprocessing step to algorithms that rely on identifiable, characteristic interest points.