enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bulk modulus - Wikipedia

    en.wikipedia.org/wiki/Bulk_modulus

    Where U is interatomic potential and r is the interatomic distance. This means the atoms are in equilibrium. To extend the two atoms approach into solid, consider a simple model, say, a 1-D array of one element with interatomic distance of r, and the equilibrium distance is r 0 .

  3. Interatomic potential - Wikipedia

    en.wikipedia.org/wiki/Interatomic_potential

    The true interatomic interactions are quantum mechanical in nature, and there is no known way in which the true interactions described by the Schrödinger equation or Dirac equation for all electrons and nuclei could be cast into an analytical functional form. Hence all analytical interatomic potentials are by necessity approximations.

  4. Embedded atom model - Wikipedia

    en.wikipedia.org/wiki/Embedded_atom_model

    In computational chemistry and computational physics, the embedded atom model, embedded-atom method or EAM, is an approximation describing the energy between atoms and is a type of interatomic potential. The energy is a function of a sum of functions of the separation between an atom and its neighbors.

  5. Buckingham potential - Wikipedia

    en.wikipedia.org/wiki/Buckingham_potential

    In theoretical chemistry, the Buckingham potential is a formula proposed by Richard Buckingham which describes the Pauli exclusion principle and van der Waals energy for the interaction of two atoms that are not directly bonded as a function of the interatomic distance.

  6. Bonding in solids - Wikipedia

    en.wikipedia.org/wiki/Bonding_in_solids

    Their strength, stiffness, and high melting points are consequences of the strength and stiffness of the covalent bonds that hold them together. They are also characteristically brittle because the directional nature of covalent bonds strongly resists the shearing motions associated with plastic flow, and are, in effect, broken when shear occurs.

  7. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    For a stretched spring fixed at one end obeying Hooke's law, the elastic potential energy is Δ E p = 1 2 k ( r 2 − r 1 ) 2 {\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}} where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.

  8. Morse potential - Wikipedia

    en.wikipedia.org/wiki/Morse_potential

    The Morse potential, named after physicist Philip M. Morse, is a convenient interatomic interaction model for the potential energy of a diatomic molecule.It is a better approximation for the vibrational structure of the molecule than the quantum harmonic oscillator because it explicitly includes the effects of bond breaking, such as the existence of unbound states.

  9. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.