Search results
Results from the WOW.Com Content Network
[27] [29] [30] The nonparametric counterpart to the paired samples t-test is the Wilcoxon signed-rank test for paired samples. For a discussion on choosing between the t-test and nonparametric alternatives, see Lumley, et al. (2002). [19] One-way analysis of variance (ANOVA) generalizes the two-sample t-test when the data belong to more than ...
The program provides methods that are appropriate for matched and independent t-tests, [2] survival analysis, [5] matched [6] and unmatched [7] [8] studies of dichotomous events, the Mantel-Haenszel test, [9] and linear regression. [3] The program can generate graphs of the relationships between power, sample size and the detectable alternative ...
G*Power is a free-to use software used to calculate statistical power. The program offers the ability to calculate power for a wide variety of statistical tests including t-tests, F-tests, and chi-square-tests, among others.
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4] The parameters used are:
Suppose we have an independent and identically distributed sample X 1, ..., X n each of which is normally distributed with mean θ and variance σ 2, and we are interested in testing the null hypothesis θ = 0 vs. the alternative hypothesis θ ≠ 0. We can perform a one sample t-test using the test statistic
A location test is a statistical hypothesis test that compares the location parameter of a statistical population ... One-sample t-test: N < 30 Normally distributed ...
Hypothesis testing is also taught at the postgraduate level. Statisticians learn how to create good statistical test procedures (like z, Student's t, F and chi-squared). Statistical hypothesis testing is considered a mature area within statistics, [25] but a limited amount of development continues.
Thanks to t-test theory, we know this test statistic under the null hypothesis follows a Student t-distribution with degrees of freedom. If we wish to reject the null at significance level α = 0.05 {\displaystyle \alpha =0.05\,} , we must find the critical value t α {\displaystyle t_{\alpha }} such that the probability of T n > t α ...