enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Srinivasa Ramanujan - Wikipedia

    en.wikipedia.org/wiki/Srinivasa_Ramanujan

    Srinivasa Ramanujan Aiyangar [a] (22 December 1887 – 26 April 1920) was an Indian mathematician.Often regarded as one of the greatest mathematicians of all time, though he had almost no formal training in pure mathematics, he made substantial contributions to mathematical analysis, number theory, infinite series, and continued fractions, including solutions to mathematical problems then ...

  3. Rogers–Ramanujan identities - Wikipedia

    en.wikipedia.org/wiki/Rogers–Ramanujan_identities

    In mathematics, the Rogers–Ramanujan identities are two identities related to basic hypergeometric series and integer partitions. The identities were first discovered and proved by Leonard James Rogers ( 1894 ), and were subsequently rediscovered (without a proof) by Srinivasa Ramanujan some time before 1913.

  4. List of Indian mathematicians - Wikipedia

    en.wikipedia.org/wiki/List_of_Indian_mathematicians

    Srinivasa Ramanujan. Indian mathematicians have made a number of contributions to mathematics that have significantly influenced scientists and mathematicians in the modern era. One of such works is Hindu numeral system which is predominantly used today and is likely to be used in the future.

  5. Ramanujan's congruences - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_congruences

    Forty years later, George Andrews and Frank Garvan found such a function, and proved the celebrated result that the crank simultaneously "explains" the three Ramanujan congruences modulo 5, 7 and 11. In the 1960s, A. O. L. Atkin of the University of Illinois at Chicago discovered additional congruences for small prime moduli.

  6. Ramanujan summation - Wikipedia

    en.wikipedia.org/wiki/Ramanujan_summation

    Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.

  7. List of Indian inventions and discoveries - Wikipedia

    en.wikipedia.org/wiki/List_of_Indian_inventions...

    Power series – The Kerala school of astronomy and mathematics or the Kerala school was a school of mathematics and astronomy founded by Madhava of Sangamagrama in Tirur, Malappuram, Kerala, India. Their work, completed two centuries before the invention of calculus in Europe, provided what is now considered the first example of a power series ...

  8. Ramanujan's lost notebook - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_lost_notebook

    Ramanujan's lost notebook is the manuscript in which the Indian mathematician Srinivasa Ramanujan recorded the mathematical discoveries of the last year (1919–1920) of his life. Its whereabouts were unknown to all but a few mathematicians until it was rediscovered by George Andrews in 1976, in a box of effects of G. N. Watson stored at the ...

  9. Category:Srinivasa Ramanujan - Wikipedia

    en.wikipedia.org/wiki/Category:Srinivasa_Ramanujan

    The Ramanujan Journal; Ramanujan Math Park; Ramanujan Mathematical Society; Ramanujan prime; Ramanujan summation; Ramanujan tau function; Ramanujan theta function; Ramanujan–Nagell equation; Ramanujan–Petersson conjecture; Ramanujan–Sato series; Ramanujan–Soldner constant; Ramanujan's congruences; Ramanujan's lost notebook; Ramanujan's ...