enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Illustration of the central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Illustration_of_the...

    In probability theory, the central limit theorem (CLT) states that, in many situations, when independent and identically distributed random variables are added, their properly normalized sum tends toward a normal distribution. This article gives two illustrations of this theorem.

  3. Galton board - Wikipedia

    en.wikipedia.org/wiki/Galton_board

    Galton box A Galton box demonstrated. The Galton board, also known as the Galton box or quincunx or bean machine (or incorrectly Dalton board), is a device invented by Francis Galton [1] to demonstrate the central limit theorem, in particular that with sufficient sample size the binomial distribution approximates a normal distribution.

  4. Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Central_limit_theorem

    In probability theory, the central limit theorem (CLT) states that, under appropriate conditions, the distribution of a normalized version of the sample mean converges to a standard normal distribution. This holds even if the original variables themselves are not normally distributed. There are several versions of the CLT, each applying in the ...

  5. Category:Central limit theorem - Wikipedia

    en.wikipedia.org/wiki/Category:Central_limit_theorem

    This page was last edited on 1 December 2024, at 08:30 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.

  6. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    This result is extended by the Donsker’s theorem, which asserts that the empirical process (^), viewed as a function indexed by , converges in distribution in the Skorokhod space [, +] to the mean-zero Gaussian process =, where B is the standard Brownian bridge. [5]

  7. Law of the iterated logarithm - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_iterated_logarithm

    The law of iterated logarithms operates "in between" the law of large numbers and the central limit theorem.There are two versions of the law of large numbers — the weak and the strong — and they both state that the sums S n, scaled by n −1, converge to zero, respectively in probability and almost surely:

  8. Lindeberg's condition - Wikipedia

    en.wikipedia.org/wiki/Lindeberg's_condition

    This theorem can be used to disprove the central limit theorem holds for by using proof by contradiction. This procedure involves proving that Lindeberg's condition fails for X k {\displaystyle X_{k}} .

  9. Cauchy distribution - Wikipedia

    en.wikipedia.org/wiki/Cauchy_distribution

    This shows that the condition of finite variance in the central limit theorem cannot be dropped. It is also an example of a more generalized version of the central limit theorem that is characteristic of all stable distributions, of which the Cauchy distribution is a special case.