Search results
Results from the WOW.Com Content Network
Cointegration is a statistical property of a collection (X 1, X 2, ..., X k) of time series variables. First, all of the series must be integrated of order d.Next, if a linear combination of this collection is integrated of order less than d, then the collection is said to be co-integrated.
Time series analysis comprises methods for analyzing time series data in order to extract meaningful statistics and other characteristics of the data. Time series forecasting is the use of a model to predict future values based on previously observed values.
In time series analysis and statistics, the cross-correlation of a pair of random process is the correlation between values of the processes at different times, as a function of the two times. Let ( X t , Y t ) {\displaystyle (X_{t},Y_{t})} be a pair of random processes, and t {\displaystyle t} be any point in time ( t {\displaystyle t} may be ...
In time series analysis, a fan chart is a chart that joins a simple line chart for observed past data, by showing ranges for possible values of future data together with a line showing a central estimate or most likely value for the future outcomes. As predictions become increasingly uncertain the further into the future one goes, these ...
For example, scaled correlation is designed to use the sensitivity to the range in order to pick out correlations between fast components of time series. [16] By reducing the range of values in a controlled manner, the correlations on long time scale are filtered out and only the correlations on short time scales are revealed.
A value in the range 0 – 0.5 indicates a time series with long-term switching between high and low values in adjacent pairs, meaning that a single high value will probably be followed by a low value and that the value after that will tend to be high, with this tendency to switch between high and low values lasting a long time into the future ...
"During that time, I received a 'normal' mammogram report every one of those years. The cancer was present, but because my breasts were so dense, the cancer could not be seen.
The CRAN task view on Time Series is the reference with many more links. The "forecast" package in R can automatically select an ARIMA model for a given time series with the auto.arima() function [that can often give questionable results] and can also simulate seasonal and non-seasonal ARIMA models with its simulate.Arima() function. [16]