Search results
Results from the WOW.Com Content Network
First-order logic also satisfies several metalogical theorems that make it amenable to analysis in proof theory, such as the Löwenheim–Skolem theorem and the compactness theorem. First-order logic is the standard for the formalization of mathematics into axioms, and is studied in the foundations of mathematics.
In this sense, propositional logic is the foundation of first-order logic and higher-order logic. Propositional logic is typically studied with a formal language, [c] in which propositions are represented by letters, which are called propositional variables. These are then used, together with symbols for connectives, to make propositional formula.
There are three common ways of handling this in first-order logic: Use first-order logic with two types. Use ordinary first-order logic, but add a new unary predicate "Set", where "Set(t)" means informally "t is a set". Use ordinary first-order logic, and instead of adding a new predicate to the language, treat "Set(t)" as an abbreviation for ...
In mathematical logic and automated theorem proving, resolution is a rule of inference leading to a refutation-complete theorem-proving technique for sentences in propositional logic and first-order logic. For propositional logic, systematically applying the resolution rule acts as a decision procedure for formula unsatisfiability, solving the ...
In propositional logic, atomic formulas are sometimes regarded as zero-place predicates. [1] In a sense, these are nullary (i.e. 0-arity) predicates. In first-order logic, a predicate forms an atomic formula when applied to an appropriate number of terms.
In mathematical logic, a first-order language of the real numbers is the set of all well-formed sentences of first-order logic that involve universal and existential quantifiers and logical combinations of equalities and inequalities of expressions over real variables.
First-order logic includes the same propositional connectives as propositional logic but differs from it because it articulates the internal structure of propositions. This happens through devices such as singular terms, which refer to particular objects, predicates , which refer to properties and relations, and quantifiers, which treat notions ...
A key use of formulas is in propositional logic and predicate logic such as first-order logic.In those contexts, a formula is a string of symbols φ for which it makes sense to ask "is φ true?", once any free variables in φ have been instantiated.