Search results
Results from the WOW.Com Content Network
The model specifies that the instantaneous interest rate follows the stochastic differential equation: d r t = a ( b − r t ) d t + σ d W t {\displaystyle dr_{t}=a(b-r_{t})\,dt+\sigma \,dW_{t}} where W t is a Wiener process under the risk neutral framework modelling the random market risk factor, in that it models the continuous inflow of ...
The initial, "prediction" step, starts from a function fitted to the function-values and derivative-values at a preceding set of points to extrapolate ("anticipate") this function's value at a subsequent, new point.
A local volatility model, in mathematical finance and financial engineering, is an option pricing model that treats volatility as a function of both the current asset level and of time . As such, it is a generalisation of the Black–Scholes model , where the volatility is a constant (i.e. a trivial function of S t {\displaystyle S_{t}} and t ...
The basic form of a linear predictor function () for data point i (consisting of p explanatory variables), for i = 1, ..., n, is = + + +,where , for k = 1, ..., p, is the value of the k-th explanatory variable for data point i, and , …, are the coefficients (regression coefficients, weights, etc.) indicating the relative effect of a particular explanatory variable on the outcome.
Linear prediction is a mathematical operation where future values of a discrete-time signal are estimated as a linear function of previous samples. In digital signal processing , linear prediction is often called linear predictive coding (LPC) and can thus be viewed as a subset of filter theory .
The predictions of the first three models (hard-sphere, power-law, and Sutherland) can be simply expressed in terms of elementary functions. The Lennard–Jones model predicts a more complicated T {\displaystyle T} -dependence, but is more accurate than the other three models and is widely used in engineering practice.
In mathematics — specifically, in stochastic analysis — Dynkin's formula is a theorem giving the expected value of any suitably smooth function applied to a Feller process at a stopping time. It may be seen as a stochastic generalization of the (second) fundamental theorem of calculus. It is named after the Russian mathematician Eugene Dynkin.
Partial stroke testing (or PST) is a technique used in a control system to allow the user to test a percentage of the possible failure modes of a shut down valve without the need to physically close the valve. PST is used to assist in determining that the safety function will operate on demand.