Search results
Results from the WOW.Com Content Network
The geometric standard deviation is used as a measure of log-normal dispersion analogously to the geometric mean. [3] As the log-transform of a log-normal distribution results in a normal distribution, we see that the geometric standard deviation is the exponentiated value of the standard deviation of the log-transformed values, i.e. = ( ()).
The geometric distribution is the only memoryless discrete probability distribution. [4] It is the discrete version of the same property found in the exponential distribution . [ 1 ] : 228 The property asserts that the number of previously failed trials does not affect the number of future trials needed for a success.
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
In statistics, maximum spacing estimation (MSE or MSP), or maximum product of spacing estimation (MPS), is a method for estimating the parameters of a univariate statistical model. [1] The method requires maximization of the geometric mean of spacings in the data, which are the differences between the values of the cumulative distribution ...
The mean and the standard deviation of a set of data are descriptive statistics usually reported together. In a certain sense, the standard deviation is a "natural" measure of statistical dispersion if the center of the data is measured about the mean. This is because the standard deviation from the mean is smaller than from any other point.
Problems of the following type, and their solution techniques, were first studied in the 18th century, and the general topic became known as geometric probability. ( Buffon's needle ) What is the chance that a needle dropped randomly onto a floor marked with equally spaced parallel lines will cross one of the lines?
In probability theory and statistics, a shape parameter (also known as form parameter) [1] is a kind of numerical parameter of a parametric family of probability distributions [2] that is neither a location parameter nor a scale parameter (nor a function of these, such as a rate parameter).
There are associated concepts, such as the DRMS (distance root mean square), which is the square root of the average squared distance error, a form of the standard deviation. Another is the R95, which is the radius of the circle where 95% of the values would fall, a 95% confidence interval .