enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  3. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Data covering the nonlinear relationships observed in a servo-amplifier circuit. Levels of various components as a function of other components are given. 167 Text Regression 1993 [160] [161] K. Ullrich UJIIndoorLoc-Mag Dataset Indoor localization database to test indoor positioning systems. Data is magnetic field based. Train and test splits ...

  4. Cross-validation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Cross-validation_(statistics)

    A single k-fold cross-validation is used with both a validation and test set. The total data set is split into k sets. One by one, a set is selected as test set. Then, one by one, one of the remaining sets is used as a validation set and the other k - 2 sets are used as training sets until all possible combinations have been evaluated. Similar ...

  5. Data validation and reconciliation - Wikipedia

    en.wikipedia.org/wiki/Data_validation_and...

    Data reconciliation is a technique that targets at correcting measurement errors that are due to measurement noise, i.e. random errors.From a statistical point of view the main assumption is that no systematic errors exist in the set of measurements, since they may bias the reconciliation results and reduce the robustness of the reconciliation.

  6. Bean Validation - Wikipedia

    en.wikipedia.org/wiki/Bean_Validation

    Bean Validation defines a metadata model and API for JavaBean validation. The metadata source is annotations, with the ability to override and extend the meta-data through the use of XML validation descriptors. Originally defined as part of Java EE, version 2 aims to work in Java SE apps as well.

  7. Data validation - Wikipedia

    en.wikipedia.org/wiki/Data_validation

    Data validation is intended to provide certain well-defined guarantees for fitness and consistency of data in an application or automated system. Data validation rules can be defined and designed using various methodologies, and be deployed in various contexts. [1]

  8. Test data - Wikipedia

    en.wikipedia.org/wiki/Test_data

    Test data are sets of inputs or information used to verify the correctness, performance, and reliability of software systems. Test data encompass various types, such as positive and negative scenarios, edge cases, and realistic user scenarios, and aims to exercise different aspects of the software to uncover bugs and validate its behavior.

  9. Verification and validation of computer simulation models

    en.wikipedia.org/wiki/Verification_and...

    A requirement is that both the system data and model data be approximately Normally Independent and Identically Distributed (NIID). The t-test statistic is used in this technique. If the mean of the model is μ m and the mean of system is μ s then the difference between the model and the system is D = μ m - μ s. The hypothesis to be tested ...