Search results
Results from the WOW.Com Content Network
In physics, the cross section is a measure of the probability that a specific process will take place in a collision of two particles. For example, the Rutherford cross-section is a measure of probability that an alpha particle will be deflected by a given angle during an interaction with an atomic nucleus.
In analogy with the cross-section of a solid, the cross-section of an n-dimensional body in an n-dimensional space is the non-empty intersection of the body with a hyperplane (an (n − 1)-dimensional subspace). This concept has sometimes been used to help visualize aspects of higher dimensional spaces. [7]
The cross section obtained in this way is called the total cross section and is usually denoted by a σ or σ T. Typical nuclear radii are of the order 10 −15 m. Assuming spherical shape, we therefore expect the cross sections for nuclear reactions to be of the order of π r 2 {\displaystyle \pi r^{2}} or 10 −28 m 2 (i.e., 1 barn).
Cross-sections values for all elements with atomic number Z smaller than 100 collected for photons with energies from 1 keV to 20 MeV. The discontinuities in the values are due to absorption edges which were also shown. In physics, absorption cross-section is a measure of the probability of an
Diagram showing a section through the centre of a cone (1) subtending a solid angle of 1 steradian in a sphere of radius r, along with the spherical "cap" (2). The external surface area A of the cap equals r2 only if solid angle of the cone is exactly 1 steradian. Hence, in this figure θ = A/2 and r = 1.
For dilute gases, kinetic molecular theory relates the diffusion coefficient D to the particle density n = N/V, the molecular mass m, the collision cross section, and the absolute temperature T by = where the second factor is the mean free path and the square root (with the Boltzmann constant k) is the mean velocity of the particles.
Each theory of quantum gravity uses the term "quantum geometry" in a slightly different fashion. String theory, a leading candidate for a quantum theory of gravity, uses it to describe exotic phenomena such as T-duality and other geometric dualities, mirror symmetry, topology-changing transitions [clarification needed], minimal possible distance scale, and other effects that challenge intuition.
Cross section (fiber), microscopic view of textile fibers. Section (fiber bundle), in differential and algebraic geometry and topology, a section of a fiber bundle or sheaf; Cross-sectional data, in statistics, econometrics, and medical research, a data set drawn from a single point in time