Search results
Results from the WOW.Com Content Network
The golden spiral is a logarithmic spiral that grows outward by a factor of the golden ratio for every 90 degrees of rotation (pitch angle about 17.03239 degrees). It can be approximated by a "Fibonacci spiral", made of a sequence of quarter circles with radii proportional to Fibonacci numbers.
For <, spiral-ring pattern; =, regular spiral; >, loose spiral. R is the distance of spiral starting point (0, R) to the center. R is the distance of spiral starting point (0, R) to the center. The calculated x and y have to be rotated backward by ( − θ {\displaystyle -\theta } ) for plotting.
The result, though not a true logarithmic spiral, closely approximates a golden spiral. [2] Another approximation is a Fibonacci spiral, which is constructed slightly differently. A Fibonacci spiral starts with a rectangle partitioned into 2 squares. In each step, a square the length of the rectangle's longest side is added to the rectangle.
An Archimedean spiral (black), a helix (green), and a conical spiral (red) Two major definitions of "spiral" in the American Heritage Dictionary are: [7] a curve on a plane that winds around a fixed center point at a continuously increasing or decreasing distance from the point.
Both the Fibonacci sequence and the sequence of Lucas numbers can be used to generate approximate forms of the golden spiral (which is a special form of a logarithmic spiral) using quarter-circles with radii from these sequences, differing only slightly from the true golden logarithmic spiral. Fibonacci spiral is generally the term used for ...
In geometry, a golden rectangle is a rectangle with side lengths in golden ratio +:, or :, with approximately equal to 1.618 or 89/55. Golden rectangles exhibit a special form of self-similarity : if a square is added to the long side, or removed from the short side, the result is a golden rectangle as well.
Many objects in the real world, such as coastlines, are statistically self-similar: parts of them show the same statistical properties at many scales. [2] Self-similarity is a typical property of fractals. Scale invariance is an exact form of self-similarity where at any magnification there is a smaller piece of the object that is similar to ...
Diophantine geometry should not be confused with the geometry of numbers, which is a collection of graphical methods for answering certain questions in algebraic number theory. Arithmetic geometry, however, is a contemporary term for much the same domain as that covered by the term Diophantine geometry.