Search results
Results from the WOW.Com Content Network
Because 5-fluorouracil is similar in shape to, but does not undergo the same chemistry as, uracil, the drug inhibits RNA transcription enzymes, thereby blocking RNA synthesis and stopping the growth of cancerous cells. [2] Uracil can also be used in the synthesis of caffeine. [27] Uracil has also shown potential as a HIV viral capsid inhibitor ...
22256 Ensembl ENSG00000076248 ENSMUSG00000029591 UniProt P13051 P97931 RefSeq (mRNA) NM_080911 NM_003362 NM_001040691 NM_011677 RefSeq (protein) NP_003353 NP_550433 NP_001035781 NP_035807 Location (UCSC) Chr 12: 109.1 – 109.11 Mb Chr 5: 114.27 – 114.28 Mb PubMed search Wikidata View/Edit Human View/Edit Mouse Uracil-DNA glycosylase (also known as UNG or UDG) is an enzyme. Its most ...
Nucleotide synthesis is an anabolic mechanism generally involving the chemical reaction of phosphate, pentose sugar, and a nitrogenous base. Degradation of nucleic acids is a catabolic reaction and the resulting parts of the nucleotides or nucleobases can be salvaged to recreate new nucleotides.
Wobble base pairs for inosine and guanine. A wobble base pair is a pairing between two nucleotides in RNA molecules that does not follow Watson-Crick base pair rules. [1] The four main wobble base pairs are guanine-uracil (G-U), hypoxanthine-uracil (I-U), hypoxanthine-adenine (I-A), and hypoxanthine-cytosine (I-C).
Uridine-5′-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Its main role is as substrate for the synthesis of RNA during transcription.
In RNA, there are many modified bases, including those contained in the nucleosides pseudouridine (Ψ), dihydrouridine (D), inosine (I), and 7-methylguanosine (m 7 G). [ 10 ] [ 11 ] Hypoxanthine and xanthine are two of the many bases created through mutagen presence, both of them through deamination (replacement of the amine-group with a ...
A salvage pathway is a pathway in which a biological product is produced from intermediates in the degradative pathway of its own or a similar substance. The term often refers to nucleotide salvage in particular, in which nucleotides (purine and pyrimidine) are synthesized from intermediates in their degradative pathway.
Uracil DNA glycosylase flips a uracil residue out of the duplex, shown in yellow. DNA glycosylases are responsible for initial recognition of the lesion. They flip the damaged base out of the double helix, as pictured, and cleave the N-glycosidic bond of the damaged base, leaving an AP site. There are two categories of glycosylases ...