Search results
Results from the WOW.Com Content Network
Boiling point (°C) K b (°C⋅kg/mol) Freezing point (°C) K f (°C⋅kg/mol) Data source; Aniline: 184.3 3.69 –5.96 –5.87 K b & K f [1] Lauric acid: 298.9 44 ...
The handling of this chemical may incur notable safety precautions. It is highly recommended that you seek the Material Safety Datasheet for this chemical from a reliable source such as SIRI or the links below, and follow its directions.
The term "cryoscopy" means "freezing measurement" in Greek. Freezing point depression is a colligative property, so ΔT depends only on the number of solute particles dissolved, not the nature of those particles. Cryoscopy is related to ebullioscopy, which determines the same value from the ebullioscopic constant (of boiling point elevation).
Menthol has local anesthetic and counterirritant qualities, and it is widely used to relieve minor throat irritation. Menthol has been demonstrated to cause a subjective nasal decongestant effect without any objective decongestant action, and administration of menthol via a nasal inhaler in humans has also been shown to cause nasal congestion ...
The relative activity of a species i, denoted a i, is defined [4] [5] as: = where μ i is the (molar) chemical potential of the species i under the conditions of interest, μ o i is the (molar) chemical potential of that species under some defined set of standard conditions, R is the gas constant, T is the thermodynamic temperature and e is the exponential constant.
Examples of other defining points are the triple point of hydrogen (−259.3467 °C) and the freezing point of aluminum (660.323 °C). Thermometers calibrated per ITS–90 use complex mathematical formulas to interpolate between its defined points. ITS–90 specifies rigorous control over variables to ensure reproducibility from lab to lab.
Uses Antoine's equation: = + from Lange's Handbook of Chemistry 10th ed. Here is a similar formula from the 67th edition of the CRC handbook. Note that the form of this formula as given is a fit to the Clausius–Clapeyron equation, which is a good theoretical starting point for calculating saturation vapor pressures:
R is the ideal gas constant. M is the molar mass of the solvent. T b is boiling point of the pure solvent in kelvin. ΔH vap is the molar enthalpy of vaporization of the solvent. Through the procedure called ebullioscopy, a known constant can be used to calculate an unknown molar mass. The term ebullioscopy means "boiling measurement" in Latin.