Search results
Results from the WOW.Com Content Network
1.0 mcal th (4.2 mJ) Calorie (15°C) Cal-15 (kg-cal-15) ... Mcal-15 (g-cal-15) Mcal 15: 1.0 Mcal 15 (4.2 MJ) kilocalorie (15°C) kcal-15 (g-cal-15) kcal 15: 1.0 ...
1.0 mcal th (4.2 mJ) Calorie (15°C) Cal-15 (kg-cal-15) ... Mcal-15 (g-cal-15) Mcal 15: 1.0 Mcal 15 (4.2 MJ) kilocalorie (15°C) kcal-15 (g-cal-15) kcal 15: 1.0 ...
The full battery designation identifies not only the size, shape and terminal layout of the battery but also the chemistry (and therefore the voltage per cell) and the number of cells in the battery. For example, a CR123 battery is always LiMnO 2 ('Lithium') chemistry, in addition to its unique size.
battery, Lithium-ion nanowire: 2.54: 95% [clarification needed] [13] battery, Lithium Thionyl Chloride (LiSOCl2) [14] 2.5: Water 220.64 bar, 373.8 °C [citation needed] [clarification needed] 1.968: 0.708: Kinetic energy penetrator [clarification needed] 1.9: 30: battery, Lithium–Sulfur [15] 1.80 [16] 1.26: battery, Fluoride-ion [citation ...
Other units still in use worldwide in some contexts are the kilocalorie per gram (Cal/g or kcal/g), mostly in food-related topics, and watt-hours per kilogram (W⋅h/kg) in the field of batteries. In some countries the Imperial unit BTU per pound (Btu/lb) is used in some engineering and applied technical fields.
A calcium metal anode offers higher volumetric capacity and gravimetric capacities (2072 mAh.mL −1 and 1337 mAh.g −1, respectively) than commercial graphite anodes in Li-ion batteries (300–430 mAh mL −1 and 372 mAh g −1). [14] A calcium sulfur (CaS) battery has theoretical energy densities of 3202 Wh/L and 1835 Wh/kg, versus 2800 Wh/L ...
Standard battery nomenclature describes portable dry cell batteries that have physical dimensions and electrical characteristics interchangeable between manufacturers. The long history of disposable dry cells means that many manufacturer-specific and national standards were used to designate sizes, long before international standards were reached.
1 cal / °C⋅g = 1 Cal / °C⋅kg = 1 kcal / °C⋅kg = 4184 J / kg⋅K [20] = 4.184 kJ / kg⋅K . Note that while cal is 1 ⁄ 1000 of a Cal or kcal, it is also per gram instead of kilo gram : ergo, in either unit, the specific heat capacity of water is approximately 1.