Search results
Results from the WOW.Com Content Network
In the brain, the NAD+/NADH ratio in brain mitochondria encourages oxidative deamination (i.e. glutamate to α-ketoglutarate and ammonia). [1] In bacteria, the ammonia is assimilated to amino acids via glutamate and aminotransferases. [2] In plants, the enzyme can work in either direction depending on environment and stress.
GLUD1 (glutamate dehydrogenase 1) is a mitochondrial matrix enzyme, one of the family of glutamate dehydrogenases that are ubiquitous in life, with a key role in nitrogen and glutamate (Glu) metabolism and energy homeostasis. This dehydrogenase is expressed at high levels in liver, brain, pancreas and kidney, but not in muscle.
Oxidative deamination is a form of deamination that generates α-keto acids and other oxidized products from amine-containing compounds, and occurs primarily in the liver. [1] Oxidative deamination is stereospecific, meaning it contains different stereoisomers as reactants and products; this process is either catalyzed by L or D- amino acid ...
Oxidative deamination is the first step to breaking down the amino acids so that they can be converted to sugars. The process begins by removing the amino group of the amino acids. The amino group becomes ammonium as it is lost and later undergoes the urea cycle to become urea, in the liver. It is then released into the blood stream, where it ...
The amino acid glutamate is used to neutralize the ammonia produced when AMP is converted into IMP. Another amino acid, aspartate, is used along with IMP to produce S-AMP in the cycle. Skeletal muscle contains amino acids for use in catabolism, known as the free amino acid pool; however, inadequate carbohydrate supply and/or strenuous exercise ...
They contain a Gly-rich region containing a conserved Lys residue, which has been implicated in the catalytic activity, in each case a reversible oxidative deamination reaction. Glutamate dehydrogenases EC 1.4.1.2, EC 1.4.1.3 and EC 1.4.1.4 (GluDH) are enzymes that catalyse the NAD- and/or NADP-dependent reversible deamination of L-glutamate ...
In enzymology, a glutamate synthase (NADPH) (EC 1.4.1.13) is an enzyme that catalyzes the chemical reaction. L-glutamine + 2-oxoglutarate + NADPH + H + 2 L-glutamate + NADP + Thus, the four substrates of this enzyme are L-glutamine, 2-oxoglutarate (α-ketoglutarate), NADPH, and H +, whereas the two products are L-glutamate and NADP +.
Since aspartate is an amino acid, an amino radical needs to be added to the oxaloacetate. This is supplied by glutamate, which in the process is transformed into alpha-ketoglutarate by the same enzyme. The second antiporter (AGC1 or AGC2) imports glutamate from the cytosol into the matrix and exports aspartate from the matrix to the cytosol.