enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    In the long run, exponential growth of any kind will overtake linear growth of any kind (that is the basis of the Malthusian catastrophe) as well as any polynomial growth, that is, for all α: = There is a whole hierarchy of conceivable growth rates that are slower than exponential and faster than linear (in the long run).

  3. Exponential function - Wikipedia

    en.wikipedia.org/wiki/Exponential_function

    Exponential growth or exponential decay—where the varaible change is proportional to the variable value—are thus modeled with exponential functions. Examples are unlimited population growth leading to Malthusian catastrophe , continuously compounded interest , and radioactive decay .

  4. Exponential decay - Wikipedia

    en.wikipedia.org/wiki/Exponential_decay

    A quantity undergoing exponential decay. Larger decay constants make the quantity vanish much more rapidly. This plot shows decay for decay constant (λ) of 25, 5, 1, 1/5, and 1/25 for x from 0 to 5. A quantity is subject to exponential decay if it decreases at a rate proportional to its current value.

  5. e (mathematical constant) - Wikipedia

    en.wikipedia.org/wiki/E_(mathematical_constant)

    The law of exponential growth can be written in different but mathematically equivalent forms, by using a different base, for which the number e is a common and convenient choice: = = /. Here, x 0 {\displaystyle x_{0}} denotes the initial value of the quantity x , k is the growth constant, and τ {\displaystyle \tau } is the time it takes the ...

  6. Accelerating change - Wikipedia

    en.wikipedia.org/wiki/Accelerating_change

    In a series of published articles from 1974 to 1979, and then in his 1988 book Mind Children, computer scientist and futurist Hans Moravec generalizes Moore's law to make predictions about the future of artificial life. Moore's law describes an exponential growth pattern in the complexity of integrated semiconductor circuits. Moravec extends ...

  7. Stretched exponential function - Wikipedia

    en.wikipedia.org/wiki/Stretched_exponential_function

    The compressed exponential function (with β > 1) has less practical importance, with the notable exceptions of β = 2, which gives the normal distribution, and of compressed exponential relaxation in the dynamics of amorphous solids. [1] In mathematics, the stretched exponential is also known as the complementary cumulative Weibull distribution.

  8. List of exponential topics - Wikipedia

    en.wikipedia.org/wiki/List_of_exponential_topics

    Exponential diophantine equation; Exponential dispersion model; Exponential distribution; Exponential error; Exponential factorial; Exponential family; Exponential field; Exponential formula; Exponential function; Exponential generating function; Exponential-Golomb coding; Exponential growth; Exponential hierarchy; Exponential integral ...

  9. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is