enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Law of cotangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_cotangents

    In trigonometry, the law of cotangents is a relationship among the lengths of the sides of a triangle and the cotangents of the halves of the three angles. [1] [2]Just as three quantities whose equality is expressed by the law of sines are equal to the diameter of the circumscribed circle of the triangle (or to its reciprocal, depending on how the law is expressed), so also the law of ...

  3. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    For four given elements there is one non-trivial case, which is discussed below. For three given elements there are six cases: three sides, two sides and an included or opposite angle, two angles and an included or opposite side, or three angles. (The last case has no analogue in planar trigonometry.) No single method solves all cases.

  4. Spherical law of cosines - Wikipedia

    en.wikipedia.org/wiki/Spherical_law_of_cosines

    Since this is a unit sphere, the lengths a, b, and c are simply equal to the angles (in radians) subtended by those sides from the center of the sphere. (For a non-unit sphere, the lengths are the subtended angles times the radius, and the formula still holds if a, b and c are reinterpreted as the subtended

  5. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    the angles of a triangle if the three sides are known: = ⁡ (+); the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines ): [ a ] a = b cos ⁡ γ ± c 2 − b 2 sin 2 ⁡ γ . {\displaystyle a=b\cos \gamma \pm {\sqrt {c^{2}-b^{2}\sin ^{2 ...

  6. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    The general spherical triangle is fully determined by three of its six characteristics (3 sides and 3 angles). The lengths of the sides a, b, c of a spherical triangle are their central angles, measured in angular units rather than linear units. (On a unit sphere, the angle (in radians) and length around the sphere are numerically the same. On ...

  7. Law of tangents - Wikipedia

    en.wikipedia.org/wiki/Law_of_tangents

    In trigonometry, the law of tangents or tangent rule [1] is a statement about the relationship between the tangents of two angles of a triangle and the lengths of the opposing sides. In Figure 1, a, b, and c are the lengths of the three sides of the triangle, and α, β, and γ are the angles opposite those three respective

  8. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  9. Law of sines - Wikipedia

    en.wikipedia.org/wiki/Law_of_sines

    In trigonometry, the law of sines, sine law, sine formula, or sine rule is an equation relating the lengths of the sides of any triangle to the sines of its angles.According to the law, ⁡ = ⁡ = ⁡ =, where a, b, and c are the lengths of the sides of a triangle, and α, β, and γ are the opposite angles (see figure 2), while R is the radius of the triangle's circumcircle.