Search results
Results from the WOW.Com Content Network
Circle packing in a circle is a two-dimensional packing problem with the objective of packing unit circles into the smallest possible larger circle. Table of solutions, 1 ≤ n ≤ 20 [ edit ]
Circle packing has become an essential tool in origami design, as each appendage on an origami figure requires a circle of paper. [12] Robert J. Lang has used the mathematics of circle packing to develop computer programs that aid in the design of complex origami figures.
A circular mil is a unit of area, equal to the area of a circle with a diameter of one mil (one thousandth of an inch or 0.0254 mm). It is equal to π /4 square mils or approximately 5.067 × 10 −4 mm 2 .
There is a papier-mâché cylinder (marked D in the annotated photograph) some 30 centimetres (12 inches) long and 6.2 centimetres (2.4 in) in diameter fastened to a mahogany handle. A second papier-mâché cylinder (marked C ) – 16.3 centimetres (6.4 in) long and 8.1 centimetres (3.2 in) diameter – is a slide fit over the first.
In this context, a diameter is any chord which passes through the conic's centre. A diameter of an ellipse is any line passing through the centre of the ellipse. [7] Half of any such diameter may be called a semidiameter, although this term is most often a synonym for the radius of a circle or sphere. [8] The longest diameter is called the ...
US hat size is the circumference of the head, measured in inches, divided by pi, rounded to the nearest 1/8 inch. This corresponds to the 1D mean diameter. [1] Diameter at breast height is the circumference of tree trunk, measured at height of 4.5 feet, divided by pi. This corresponds to the 1D mean diameter.
Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]
Circle with similar triangles: circumscribed side, inscribed side and complement, inscribed split side and complement. Let one side of an inscribed regular n-gon have length s n and touch the circle at points A and B. Let A′ be the point opposite A on the circle, so that A′A is a diameter, and A′AB is an inscribed triangle on a diameter.