Search results
Results from the WOW.Com Content Network
For any pair of positive integers n and k, the number of k-tuples of non-negative integers whose sum is n is equal to the number of multisets of size k − 1 taken from a set of size n + 1, or equivalently, the number of multisets of size n taken from a set of size k, and is given by
Lickorish–Wallace theorem (3-manifolds) Lie's theorem (Lie algebra) Lie's third theorem ; Lie–Palais theorem (differential geometry) Lindemann–Weierstrass theorem (transcendental number theory) Lie–Kolchin theorem (algebraic groups, representation theory) Liénard's theorem (dynamical systems) Lindelöf's theorem (complex analysis)
Similar right triangles illustrating the tangent and secant trigonometric functions Trigonometric functions and their reciprocals on the unit circle. The Pythagorean theorem applied to the blue triangle shows the identity 1 + cot 2 θ = csc 2 θ, and applied to the red triangle shows that 1 + tan 2 θ = sec 2 θ.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.
Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .
The free group G = π 1 (X) has n = 2 generators corresponding to loops a,b from the base point P in X.The subgroup H of even-length words, with index e = [G : H] = 2, corresponds to the covering graph Y with two vertices corresponding to the cosets H and H' = aH = bH = a −1 H = b − 1 H, and two lifted edges for each of the original loop-edges a,b.
These subfields have degree 3 over since the subgroups have index 3 in G. The subgroups are not normal in G , so the subfields are not Galois or normal over Q {\displaystyle \mathbb {Q} } . In fact, each subfield contains only a single one of the roots α 1 , α 2 , α 3 {\displaystyle \alpha _{1},\alpha _{2},\alpha _{3}} , so none has any non ...
If G is simple, and |G| = 30, then n 3 must divide 10 ( = 2 · 5), and n 3 must equal 1 (mod 3). Therefore, n 3 = 10, since neither 4 nor 7 divides 10, and if n 3 = 1 then, as above, G would have a normal subgroup of order 3, and could not be simple. G then has 10 distinct cyclic subgroups of order 3, each of which has 2 elements of order 3 ...