enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Scientific notation - Wikipedia

    en.wikipedia.org/wiki/Scientific_notation

    While base ten is normally used for scientific notation, powers of other bases can be used too, [25] base 2 being the next most commonly used one. For example, in base-2 scientific notation, the number 1001 b in binary (=9 d) is written as 1.001 b × 2 d 11 b or 1.001 b × 10 b 11 b using binary numbers (or shorter 1.001 × 10 11 if binary ...

  3. Schönhage–Strassen algorithm - Wikipedia

    en.wikipedia.org/wiki/Schönhage–Strassen...

    The run-time bit complexity to multiply two n-digit numbers using the algorithm is (⁡ ⁡ ⁡) in big O notation. The Schönhage–Strassen algorithm was the asymptotically fastest multiplication method known from 1971 until 2007.

  4. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    In the case of a negative 11, multiplier, or both apply the sign to the final product as per normal multiplication of the two numbers. A step-by-step example of 759 × 11: The ones digit of the multiplier, 9, is copied to the temporary result. result: 9; Add 5 + 9 = 14 so 4 is placed on the left side of the result and carry the 1. result: 49

  5. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    The standard procedure for multiplication of two n-digit numbers requires a number of elementary operations proportional to , or () in big-O notation. Andrey Kolmogorov conjectured that the traditional algorithm was asymptotically optimal, meaning that any algorithm for that task would require () elementary operations.

  6. Significant figures - Wikipedia

    en.wikipedia.org/wiki/Significant_figures

    The digits in the base and exponent (10 3 or 10 −2) are considered exact numbers so for these digits, significant figures are irrelevant. Explicitly state the number of significant figures (the abbreviation s.f. is sometimes used): For example "20 000 to 2 s.f." or "20 000 (2 sf)".

  7. Exponentiation - Wikipedia

    en.wikipedia.org/wiki/Exponentiation

    In mathematics, exponentiation, denoted b n, is an operation involving two numbers: the base, b, and the exponent or power, n. [1] When n is a positive integer, exponentiation corresponds to repeated multiplication of the base: that is, b n is the product of multiplying n bases: [1] = ⏟.

  8. Floating-point arithmetic - Wikipedia

    en.wikipedia.org/wiki/Floating-point_arithmetic

    For example, if there is no representable number lying between the representable numbers 1.45a70c22 hex and 1.45a70c24 hex, the ULP is 2×16 −8, or 2 −31. For numbers with a base-2 exponent part of 0, i.e. numbers with an absolute value higher than or equal to 1 but lower than 2, an ULP is exactly 2 −23 or about 10 −7 in single ...

  9. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    In arbitrary-precision arithmetic, it is common to use long multiplication with the base set to 2 w, where w is the number of bits in a word, for multiplying relatively small numbers. To multiply two numbers with n digits using this method, one needs about n 2 operations.