enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Formulas for generating Pythagorean triples - Wikipedia

    en.wikipedia.org/wiki/Formulas_for_generating...

    Then r 2 /2 = 18. The three factor-pairs of 18 are (1, 18), (2, 9), and (3, 6). All three factor pairs will produce triples using the above equations. s = 1, t = 18 produces the triple [7, 24, 25] because x = 6 + 1 = 7, y = 6 + 18 = 24, z = 6 + 1 + 18 = 25. s = 2, t = 9 produces the triple [8, 15, 17] because x = 6 + 2 = 8, y = 6 + 9 = 15, z ...

  3. Like terms - Wikipedia

    en.wikipedia.org/wiki/Like_terms

    As this example shows, when like terms exist in an expression, they may be combined by adding or subtracting (whatever the expression indicates) the coefficients, and maintaining the common factor of both terms. Such combination is called combining like terms or collecting like terms, and it is an important tool used for solving equations.

  4. Factorization - Wikipedia

    en.wikipedia.org/wiki/Factorization

    The next odd divisor to be tested is 7. One has 77 = 7 · 11, and thus n = 2 · 3 2 · 7 · 11. This shows that 7 is prime (easy to test directly). Continue with 11, and 7 as a first divisor candidate. As 7 2 > 11, one has finished. Thus 11 is prime, and the prime factorization is; 1386 = 2 · 3 2 · 7 · 11.

  5. Equating coefficients - Wikipedia

    en.wikipedia.org/wiki/Equating_coefficients

    The unique pair of values a, b satisfying the first two equations is (a, b) = (1, 1); since these values also satisfy the third equation, there do in fact exist a, b such that a times the original first equation plus b times the original second equation equals the original third equation; we conclude that the third equation is linearly ...

  6. Factorization of polynomials - Wikipedia

    en.wikipedia.org/wiki/Factorization_of_polynomials

    If one of these values is 0, we have a linear factor. If the values are nonzero, we can list the possible factorizations for each. Now, 2 can only factor as 1×2, 2×1, (−1)×(−2), or (−2)×(−1). Therefore, if a second degree integer polynomial factor exists, it must take one of the values p(0) = 1, 2, −1, or −2. and likewise for p(1).

  7. System of polynomial equations - Wikipedia

    en.wikipedia.org/wiki/System_of_polynomial_equations

    The Barth surface, shown in the figure is the geometric representation of the solutions of a polynomial system reduced to a single equation of degree 6 in 3 variables. Some of its numerous singular points are visible on the image. They are the solutions of a system of 4 equations of degree 5 in 3 variables.

  8. What is a factor rate and how to calculate it - AOL

    www.aol.com/finance/factor-rate-calculate...

    Step 2: Multiply the decimal by 365. Step 3: Divide the result by your repayment period. Step 4: Multiply the result by 100. Here’s an example using the $100,000 loan with a factor rate of 1.5 ...

  9. Linear congruential generator - Wikipedia

    en.wikipedia.org/wiki/Linear_congruential_generator

    Each row shows the state evolving until it repeats. The top row shows a generator with m = 9, a = 2, c = 0, and a seed of 1, which produces a cycle of length 6. The second row is the same generator with a seed of 3, which produces a cycle of length 2. Using a = 4 and c = 1 (bottom row) gives a cycle length of 9 with any seed in [0, 8].