enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Uniform continuity - Wikipedia

    en.wikipedia.org/wiki/Uniform_continuity

    The definition of uniform continuity appears earlier in the work of Bolzano where he also proved that continuous functions on an open interval do not need to be uniformly continuous. In addition he also states that a continuous function on a closed interval is uniformly continuous, but he does not give a complete proof.

  3. Heine–Cantor theorem - Wikipedia

    en.wikipedia.org/wiki/Heine–Cantor_theorem

    Proof of Heine–Cantor theorem. Suppose that and are two metric spaces with metrics and , respectively.Suppose further that a function : is continuous and is compact. We want to show that is uniformly continuous, that is, for every positive real number > there exists a positive real number > such that for all points , in the function domain, (,) < implies that ((), ()) <.

  4. Heine–Borel theorem - Wikipedia

    en.wikipedia.org/wiki/Heine–Borel_theorem

    Central to the theory was the concept of uniform continuity and the theorem stating that every continuous function on a closed and bounded interval is uniformly continuous. Peter Gustav Lejeune Dirichlet was the first to prove this and implicitly he used the existence of a finite subcover of a given open cover of a closed interval in his proof. [1]

  5. Uniform convergence - Wikipedia

    en.wikipedia.org/wiki/Uniform_convergence

    This theorem is proved by the "ε/3 trick", and is the archetypal example of this trick: to prove a given inequality (ε), one uses the definitions of continuity and uniform convergence to produce 3 inequalities (ε/3), and then combines them via the triangle inequality to produce the desired inequality.

  6. Continuous function - Wikipedia

    en.wikipedia.org/wiki/Continuous_function

    A stronger form of continuity is uniform continuity. In order theory, especially in domain theory, a related concept of continuity is Scott continuity. As an example, the function H(t) denoting the height of a growing flower at time t would be considered continuous.

  7. Hölder condition - Wikipedia

    en.wikipedia.org/wiki/Hölder_condition

    The Hölder space C k,α (Ω), where Ω is an open subset of some Euclidean space and k ≥ 0 an integer, consists of those functions on Ω having continuous derivatives up through order k and such that the k-th partial derivatives are Hölder continuous with exponent α, where 0 < α ≤ 1. This is a locally convex topological vector space.

  8. Modulus of continuity - Wikipedia

    en.wikipedia.org/wiki/Modulus_of_continuity

    A sublinear modulus of continuity can easily be found for any uniformly continuous function which is a bounded perturbation of a Lipschitz function: if f is a uniformly continuous function with modulus of continuity ω, and g is a k Lipschitz function with uniform distance r from f, then f admits the sublinear module of continuity min{ω(t), 2r ...

  9. Lipschitz continuity - Wikipedia

    en.wikipedia.org/wiki/Lipschitz_continuity

    For a Lipschitz continuous function, there exists a double cone (white) whose origin can be moved along the graph so that the whole graph always stays outside the double cone. In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions.