enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bag-of-words model - Wikipedia

    en.wikipedia.org/wiki/Bag-of-words_model

    A common alternative to using dictionaries is the hashing trick, where words are mapped directly to indices with a hashing function. [5] Thus, no memory is required to store a dictionary. Hash collisions are typically dealt via freed-up memory to increase the number of hash buckets [clarification needed]. In practice, hashing simplifies the ...

  3. Word2vec - Wikipedia

    en.wikipedia.org/wiki/Word2vec

    The use of different model parameters and different corpus sizes can greatly affect the quality of a word2vec model. Accuracy can be improved in a number of ways, including the choice of model architecture (CBOW or Skip-Gram), increasing the training data set, increasing the number of vector dimensions, and increasing the window size of words ...

  4. Caffe (software) - Wikipedia

    en.wikipedia.org/wiki/Caffe_(software)

    Caffe (Convolutional Architecture for Fast Feature Embedding) is a deep learning framework, originally developed at University of California, Berkeley. It is open source , under a BSD license . [ 4 ]

  5. BERT (language model) - Wikipedia

    en.wikipedia.org/wiki/BERT_(language_model)

    It is notable for its dramatic improvement over previous state-of-the-art models, and as an early example of a large language model. As of 2020, BERT is a ubiquitous baseline in natural language processing (NLP) experiments. [3] BERT is trained by masked token prediction and next sentence prediction.

  6. Speech recognition - Wikipedia

    en.wikipedia.org/wiki/Speech_recognition

    A related book, published earlier in 2014, "Deep Learning: Methods and Applications" by L. Deng and D. Yu provides a less technical but more methodology-focused overview of DNN-based speech recognition during 2009–2014, placed within the more general context of deep learning applications including not only speech recognition but also image ...

  7. Deep learning speech synthesis - Wikipedia

    en.wikipedia.org/wiki/Deep_learning_speech_synthesis

    Deep learning speech synthesis refers to the application of deep learning models to generate natural-sounding human speech from written text (text-to-speech) or spectrum . Deep neural networks are trained using large amounts of recorded speech and, in the case of a text-to-speech system, the associated labels and/or input text.

  8. Cache language model - Wikipedia

    en.wikipedia.org/wiki/Cache_language_model

    The success of the cache language model in improving word prediction rests on the human tendency to use words in a "bursty" fashion: when one is discussing a certain topic in a certain context, the frequency with which one uses certain words will be quite different from their frequencies when one is discussing other topics in other contexts ...

  9. Attention (machine learning) - Wikipedia

    en.wikipedia.org/wiki/Attention_(machine_learning)

    During the deep learning era, attention mechanism was developed to solve similar problems in encoding-decoding. [1] In machine translation, the seq2seq model, as it was proposed in 2014, [24] would encode an input text into a fixed-length vector, which would then be decoded into an output text. If the input text is long, the fixed-length vector ...