Search results
Results from the WOW.Com Content Network
In mathematical finance, a Monte Carlo option model uses Monte Carlo methods [Notes 1] to calculate the value of an option with multiple sources of uncertainty or with complicated features. [1] The first application to option pricing was by Phelim Boyle in 1977 (for European options ).
There are many pricing models in use, although all essentially incorporate the concepts of rational pricing (i.e. risk neutrality), moneyness, option time value and put–call parity. The valuation itself combines (1) a model of the behavior ( "process" ) of the underlying price with (2) a mathematical method which returns the premium as a ...
Calculating option prices, and their "Greeks", i.e. sensitivities, combines: (i) a model of the underlying price behavior, or "process" - i.e. the asset pricing model selected, with its parameters having been calibrated to observed prices; and (ii) a mathematical method which returns the premium (or sensitivity) as the expected value of option ...
Martingale pricing is a pricing approach based on the notions of martingale and risk neutrality. The martingale pricing approach is a cornerstone of modern quantitative finance and can be applied to a variety of derivatives contracts, e.g. options , futures , interest rate derivatives , credit derivatives , etc.
Remember that an estimator for the price of a derivative is a random variable, and in the framework of a risk-management activity, uncertainty on the price of a portfolio of derivatives and/or on its risks can lead to suboptimal risk-management decisions. This state of affairs can be mitigated by variance reduction techniques.
The freight derivatives market for dry cargo vessels saw a big increase in traded volumes in 2021. Dry forward freight agreement (FFA) volumes hit 2,524,271 lots, up 61% on 2020. Options trading in the dry market hit an all-time high of 409,255, up 25% on the previous year.
Finite difference methods were first applied to option pricing by Eduardo Schwartz in 1977. [2] [3]: 180 In general, finite difference methods are used to price options by approximating the (continuous-time) differential equation that describes how an option price evolves over time by a set of (discrete-time) difference equations.
Haug, E. G (2007). "Option Pricing and Hedging from Theory to Practice". Derivatives: Models on Models. Wiley. ISBN 978-0-470-01322-9. The book gives a series of historical references supporting the theory that option traders use much more robust hedging and pricing principles than the Black, Scholes and Merton model. Triana, Pablo (2009).