enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Expectation–maximization algorithm - Wikipedia

    en.wikipedia.org/wiki/Expectation–maximization...

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay includes simple examples of the EM algorithm such as clustering using the soft k-means algorithm, and emphasizes the variational view of the EM algorithm, as described in Chapter 33.7 of version 7.2 (fourth edition).

  3. EM algorithm and GMM model - Wikipedia

    en.wikipedia.org/wiki/EM_Algorithm_And_GMM_Model

    The EM algorithm consists of two steps: the E-step and the M-step. Firstly, the model parameters and the () can be randomly initialized. In the E-step, the algorithm tries to guess the value of () based on the parameters, while in the M-step, the algorithm updates the value of the model parameters based on the guess of () of the E-step.

  4. List of optimization software - Wikipedia

    en.wikipedia.org/wiki/List_of_optimization_software

    The use of optimization software requires that the function f is defined in a suitable programming language and connected at compilation or run time to the optimization software. The optimization software will deliver input values in A , the software module realizing f will deliver the computed value f ( x ) and, in some cases, additional ...

  5. Baum–Welch algorithm - Wikipedia

    en.wikipedia.org/wiki/Baum–Welch_algorithm

    In electrical engineering, statistical computing and bioinformatics, the Baum–Welch algorithm is a special case of the expectation–maximization algorithm used to find the unknown parameters of a hidden Markov model (HMM). It makes use of the forward-backward algorithm to compute the statistics for the expectation step. The Baum–Welch ...

  6. Simulation Optimization Library: Throughput Maximization

    en.wikipedia.org/wiki/Simulation_Optimization...

    The problem of Throughput Maximization is a family of iterative stochastic optimization algorithms that attempt to find the maximum expected throughput in an n-stage Flow line. According to Pichitlamken et al. (2006), there are two solutions to the discrete service-rate moderate-sized problem.

  7. Dynamic discrete choice - Wikipedia

    en.wikipedia.org/wiki/Dynamic_discrete_choice

    Estimation of dynamic discrete choice models is particularly challenging, due to the fact that the researcher must solve the backwards recursion problem for each guess of the structural parameters. The most common methods used to estimate the structural parameters are maximum likelihood estimation and method of simulated moments.

  8. L1-norm principal component analysis - Wikipedia

    en.wikipedia.org/wiki/L1-norm_principal...

    In ()-(), L1-norm ‖ ‖ returns the sum of the absolute entries of its argument and L2-norm ‖ ‖ returns the sum of the squared entries of its argument.If one substitutes ‖ ‖ in by the Frobenius/L2-norm ‖ ‖, then the problem becomes standard PCA and it is solved by the matrix that contains the dominant singular vectors of (i.e., the singular vectors that correspond to the highest ...

  9. Softmax function - Wikipedia

    en.wikipedia.org/wiki/Softmax_function

    The Softmax function is a smooth approximation to the arg max function: the function whose value is the index of a vector's largest element. The name "softmax" may be misleading.