Search results
Results from the WOW.Com Content Network
According to the theory of the Dirac sea, developed by Paul Dirac in 1930, the vacuum of space is full of negative energy. This theory was developed to explain the anomaly of negative-energy quantum states predicted by the Dirac equation. A year later, after work by Weyl, the negative energy concept was abandoned and replaced by a theory of ...
The calculated vacuum energy is a positive, rather than negative, contribution to the cosmological constant because the existing vacuum has negative quantum-mechanical pressure, while in general relativity, the gravitational effect of negative pressure is a kind of repulsion.
The Dirac sea is a theoretical model of the electron vacuum as an infinite sea of electrons with negative energy, now called positrons. It was first postulated by the British physicist Paul Dirac in 1930 [1] to explain the anomalous negative-energy quantum states predicted by the relativistically-correct Dirac equation for electrons. [2]
The discrepancy between theorized vacuum energy from quantum field theory and observed vacuum energy from cosmology is a source of major contention, with the values predicted exceeding observation by some 120 orders of magnitude, a discrepancy that has been called "the worst theoretical prediction in the history of physics!".
Quantum inequalities [1] are local constraints on the magnitude and extent of distributions of negative energy density in space-time. Initially conceived to clear up a long-standing problem in quantum field theory (namely, the potential for unconstrained negative energy density at a point), quantum inequalities have proven to have a diverse range of applications.
Quantum field theory states that all fundamental fields, such as the electromagnetic field, must be quantized at every point in space. A field in physics may be envisioned as if space were filled with interconnected vibrating balls and springs, and the strength of the field is like the displacement of a ball from its rest position.
Dirac hole theory is a theory in quantum mechanics, named after English theoretical physicist Paul Dirac, who introduced it in 1929. [1] The theory poses that the continuum of negative energy states, that are solutions to the Dirac equation, are filled with electrons, and the vacancies in this continuum (holes) are manifested as positrons with energy and momentum that are the negative of those ...
In quantum field theory, the quantum vacuum state (also called the quantum vacuum or vacuum state) is the quantum state with the lowest possible energy. Generally, it contains no physical particles. The term zero-point field is sometimes used as a synonym for the vacuum state of a quantized field which is completely individual. [clarification ...