Search results
Results from the WOW.Com Content Network
kT (also written as k B T) is the product of the Boltzmann constant, k (or k B), and the temperature, T.This product is used in physics as a scale factor for energy values in molecular-scale systems (sometimes it is used as a unit of energy), as the rates and frequencies of many processes and phenomena depend not on their energy alone, but on the ratio of that energy and kT, that is, on E ...
The thermal energy can be used to calculate the root-mean-square speed of the atoms, which turns out to be inversely proportional to the square root of the atomic mass. The root mean square speeds found at room temperature accurately reflect this, ranging from 1370 m/s for helium, down to 240 m/s for xenon.
As another example, the internal excited electronic states of a hydrogen atom do not contribute to its specific heat as a gas at room temperature, since the thermal energy k B T (roughly 0.025 eV) is much smaller than the spacing between the lowest and next higher electronic energy levels (roughly 10 eV).
energy required to break a covalent bond in germanium < 120 meV: upper bound on the rest mass energy of neutrinos (sum of 3 flavors) [16] 38 meV: average kinetic energy, 3 / 2 k B T, of one gas molecule at room temperature: 25 meV: thermal energy, k B T, at room temperature 230 μeV
A kitchen oven, at a temperature about double room temperature on the absolute temperature scale (600 K vs. 300 K) radiates 16 times as much power per unit area. An object at the temperature of the filament in an incandescent light bulb—roughly 3000 K, or 10 times room temperature—radiates 10,000 times as much energy per unit area.
Internal energy: The energy contained within a body of matter or radiation, excluding the potential energy of the whole system, and excluding the kinetic energy of the system moving as a whole. Heat : Energy in transfer between a system and its surroundings by mechanisms other than thermodynamic work and transfer of matter.
In non-thermal units, it can also be measured in byte per joule, or more conveniently, gigabyte per nanojoule; [3] 1 K −1 is equivalent to about 13,062 gigabytes per nanojoule; at room temperature: T = 300K, β ≈ 44 GB/nJ ≈ 39 eV −1 ≈ 2.4 × 10 20 J −1. The conversion factor is 1 GB/nJ = J −1.
The temperature of the ideal gas is proportional to the average kinetic energy of its particles. The size of helium atoms relative to their spacing is shown to scale under 1,950 atmospheres of pressure. The atoms have an average speed relative to their size slowed down here two trillion fold from that at room temperature.