Search results
Results from the WOW.Com Content Network
Balmer noticed that a single wavelength had a relation to every line in the hydrogen spectrum that was in the visible light region. That wavelength was 364.506 82 nm . When any integer higher than 2 was squared and then divided by itself squared minus 4, then that number multiplied by 364.506 82 nm (see equation below) gave the wavelength of ...
Full width at half maximum. In a distribution, full width at half maximum (FWHM) is the difference between the two values of the independent variable at which the dependent variable is equal to half of its maximum value.
In 1890, Rydberg proposed on a formula describing the relation between the wavelengths in spectral lines of alkali metals. [2]: v1:376 He noticed that lines came in series and he found that he could simplify his calculations using the wavenumber (the number of waves occupying the unit length, equal to 1/λ, the inverse of the wavelength) as his unit of measurement.
The wavelength of a sine wave, λ, can be measured between any two points with the same phase, such as between crests (on top), or troughs (on bottom), or corresponding zero crossings as shown. In physics and mathematics, wavelength or spatial period of a wave or periodic function is the distance over which the wave's shape repeats.
The shortest wavelength's index is , and the longest's is . Abbe numbers are used to classify glass and other optical materials in terms of their chromaticity . For example, the higher dispersion flint glasses have relatively small Abbe numbers V < 55 {\displaystyle V<55} whereas the lower dispersion crown glasses have larger Abbe numbers.
It consists of the shortest wavelength electromagnetic waves, typically shorter than those of X-rays. With frequencies above 30 exahertz ( 3 × 10 19 Hz ) and wavelengths less than 10 picometers ( 1 × 10 −11 m ), gamma ray photons have the highest photon energy of any form of electromagnetic radiation.
The version of the Rydberg formula that generated the Lyman series was: [2] = (= +) where n is a natural number greater than or equal to 2 (i.e., n = 2, 3, 4, .... Therefore, the lines seen in the image above are the wavelengths corresponding to n = 2 on the right, to n → ∞ on the left.
The equivalent width of a spectral line is a measure of the area of the line on a plot of intensity versus wavelength in relation to underlying continuum level. It is found by forming a rectangle with a height equal to that of continuum emission, and finding the width such that the area of the rectangle is equal to the area in the spectral line.