enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Feller's coin-tossing constants - Wikipedia

    en.wikipedia.org/wiki/Feller's_coin-tossing...

    The exact probability p(n,2) can be calculated either by using Fibonacci numbers, p(n,2) = + or by solving a direct recurrence relation leading to the same result. For higher values of k {\displaystyle k} , the constants are related to generalizations of Fibonacci numbers such as the tribonacci and tetranacci numbers.

  3. Checking whether a coin is fair - Wikipedia

    en.wikipedia.org/wiki/Checking_whether_a_coin_is...

    (Note: r is the probability of obtaining heads when tossing the same coin once.) Plot of the probability density f(r | H = 7, T = 3) = 1320 r 7 (1 − r) 3 with r ranging from 0 to 1. The probability for an unbiased coin (defined for this purpose as one whose probability of coming down heads is somewhere between 45% and 55%)

  4. Complementary event - Wikipedia

    en.wikipedia.org/wiki/Complementary_event

    For example, if a typical coin is tossed and one assumes that it cannot land on its edge, then it can either land showing "heads" or "tails." Because these two outcomes are mutually exclusive (i.e. the coin cannot simultaneously show both heads and tails) and collectively exhaustive (i.e. there are no other possible outcomes not represented ...

  5. Fair coin - Wikipedia

    en.wikipedia.org/wiki/Fair_coin

    A fair coin, when tossed, should have an equal chance of landing either side up. In probability theory and statistics, a sequence of independent Bernoulli trials with probability 1/2 of success on each trial is metaphorically called a fair coin. One for which the probability is not 1/2 is called a biased or unfair coin.

  6. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    For instance, if X is used to denote the outcome of a coin toss ("the experiment"), then the probability distribution of X would take the value 0.5 (1 in 2 or 1/2) for X = heads, and 0.5 for X = tails (assuming that the coin is fair). More commonly, probability distributions are used to compare the relative occurrence of many different random ...

  7. Bernoulli process - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_process

    This probability is commonly called the Bernoulli measure. [ 2 ] Note that the probability of any specific, infinitely long sequence of coin flips is exactly zero; this is because lim n → ∞ p n = 0 {\displaystyle \lim _{n\to \infty }p^{n}=0} , for any 0 ≤ p < 1 {\displaystyle 0\leq p<1} .

  8. Coupling (probability) - Wikipedia

    en.wikipedia.org/wiki/Coupling_(probability)

    Intuitively, if both coins are tossed the same number of times, we should expect the first coin turns up fewer heads than the second one. More specifically, for any fixed k , the probability that the first coin produces at least k heads should be less than the probability that the second coin produces at least k heads.

  9. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    It can be used to represent a (possibly biased) coin toss where 1 and 0 would represent "heads" and "tails", respectively, and p would be the probability of the coin landing on heads (or vice versa where 1 would represent tails and p would be the probability of tails). In particular, unfair coins would have /