Search results
Results from the WOW.Com Content Network
Points where concavity changes (between concave and convex) are inflection points. [5] If f is twice-differentiable, then f is concave if and only if f ′′ is non-positive (or, informally, if the "acceleration" is non-positive). If f ′′ is negative then f is strictly concave, but the converse is not true, as shown by f(x) = −x 4.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.
The value of R 2 is negative if the second surface is convex, and positive if concave. Sign conventions vary between different authors, which results in different forms of these equations depending on the convention used. For a spherically-curved mirror in air, the magnitude of the focal length is equal to the radius of curvature of the mirror ...
For the graph of a function f of differentiability class C 2 (its first derivative f', and its second derivative f'', exist and are continuous), the condition f'' = 0 can also be used to find an inflection point since a point of f'' = 0 must be passed to change f'' from a positive value (concave upward) to a negative value (concave downward) or ...
If it is positive then the graph has an upward concavity, and, if it is negative the graph has a downward concavity. If it is zero, then one has an inflection point or an undulation point. When the slope of the graph (that is the derivative of the function) is small, the signed curvature is well approximated by the second derivative.
Specifically, a twice-differentiable function f is concave up if ″ > and concave down if ″ <. Note that if f ( x ) = x 4 {\displaystyle f(x)=x^{4}} , then x = 0 {\displaystyle x=0} has zero second derivative, yet is not an inflection point, so the second derivative alone does not give enough information to determine whether a given point is ...
If the determinant has the same sign as that of the orientation matrix for the entire polygon, then the sequence is convex. If the signs differ, then the sequence is concave. In this example, the polygon is negatively oriented, but the determinant for the points F-G-H is positive, and so the sequence F-G-H is concave.
If a density is log-concave, so is its survival function. [3] If a density is log-concave, it has a monotone hazard rate (MHR), and is a regular distribution since the derivative of the logarithm of the survival function is the negative hazard rate, and by concavity is monotone i.e.