Search results
Results from the WOW.Com Content Network
Stack buffer overflow is a type of the more general programming malfunction known as buffer overflow (or buffer overrun). [1] Overfilling a buffer on the stack is more likely to derail program execution than overfilling a buffer on the heap because the stack contains the return addresses for all active function calls.
Visualization of a software buffer overflow. Data is written into A, but is too large to fit within A, so it overflows into B.. In programming and information security, a buffer overflow or buffer overrun is an anomaly whereby a program writes data to a buffer beyond the buffer's allocated memory, overwriting adjacent memory locations.
Canaries or canary words or stack cookies are known values that are placed between a buffer and control data on the stack to monitor buffer overflows. When the buffer overflows, the first data to be corrupted will usually be the canary, and a failed verification of the canary data will therefore alert of an overflow, which can then be handled, for example, by invalidating the corrupted data.
An accidental overflow may result in data corruption or unexpected behavior by any process that accesses the affected memory area. On operating systems without memory protection, this could be any process on the system. For example, a Microsoft JPEG GDI+ buffer overflow vulnerability could allow remote execution of code on the affected machine. [1]
In computer security and programming, a buffer over-read [1] [2] or out-of-bounds read [3] is an anomaly where a program, while reading data from a buffer, overruns the buffer's boundary and reads (or tries to read) adjacent memory.
The Network Time Protocol has an overflow issue related to the Year 2038 problem, which manifests itself at 06:28:16 UTC on 7 February 2036, rather than 2038. The 64-bit timestamps used by NTP consist of a 32-bit part for seconds and a 32-bit part for fractional second, giving NTP a time scale that rolls over every 2 32 seconds (136 years) and ...
Segmentation faults can also occur independently of page faults: illegal access to a valid page is a segmentation fault, but not an invalid page fault, and segmentation faults can occur in the middle of a page (hence no page fault), for example in a buffer overflow that stays within a page but illegally overwrites memory.
Ada also supports run-time checks to protect against access to unallocated memory, buffer overflow errors, range violations, off-by-one errors, array access errors, and other detectable bugs. These checks can be disabled in the interest of runtime efficiency, but can often be compiled efficiently.