enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  3. Correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Correlation_coefficient

    A correlation coefficient is a numerical measure of some type of linear correlation, meaning a statistical relationship between two variables. [ a ] The variables may be two columns of a given data set of observations, often called a sample , or two components of a multivariate random variable with a known distribution .

  4. Correlation - Wikipedia

    en.wikipedia.org/wiki/Correlation

    The correlation coefficient is +1 in the case of a perfect direct (increasing) linear relationship (correlation), −1 in the case of a perfect inverse (decreasing) linear relationship (anti-correlation), [5] and some value in the open interval (,) in all other cases, indicating the degree of linear dependence between the variables. As it ...

  5. Partial correlation - Wikipedia

    en.wikipedia.org/wiki/Partial_correlation

    The value –1 conveys a perfect negative correlation controlling for some variables (that is, an exact linear relationship in which higher values of one variable are associated with lower values of the other); the value 1 conveys a perfect positive linear relationship, and the value 0 conveys that there is no linear relationship.

  6. Spearman's rank correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Spearman's_rank_correlation...

    The Spearman correlation coefficient is often described as being "nonparametric". This can have two meanings. First, a perfect Spearman correlation results when X and Y are related by any monotonic function. Contrast this with the Pearson correlation, which only gives a perfect value when X and Y are related by a linear function.

  7. Spurious correlation of ratios - Wikipedia

    en.wikipedia.org/wiki/Spurious_correlation_of_ratios

    Pearson states a simple example of spurious correlation: [1] Select three numbers within certain ranges at random, say x, y, z, these will be pair and pair uncorrelated. Form the proper fractions x/z and y/z for each triplet, and correlation will be found between these indices. The scatter plot above illustrates this example using 500 ...

  8. Covariance and correlation - Wikipedia

    en.wikipedia.org/wiki/Covariance_and_correlation

    With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.

  9. Bivariate data - Wikipedia

    en.wikipedia.org/wiki/Bivariate_data

    Correlations between the two variables are determined as strong or weak correlations and are rated on a scale of –1 to 1, where 1 is a perfect direct correlation, –1 is a perfect inverse correlation, and 0 is no correlation. In the case of long legs and long strides, there would be a strong direct correlation. [6]