enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Volume of fluid method - Wikipedia

    en.wikipedia.org/wiki/Volume_of_fluid_method

    In computational fluid dynamics, the volume of fluid (VOF) method is a family of free-surface modelling techniques, i.e. numerical techniques for tracking and locating the free surface (or fluid–fluid interface). They belong to the class of Eulerian methods which are characterized by a mesh that is either stationary or is moving in a certain ...

  3. Morison equation - Wikipedia

    en.wikipedia.org/wiki/Morison_equation

    The Morison equation is a heuristic formulation of the force fluctuations in an oscillatory flow. The first assumption is that the flow acceleration is more-or-less uniform at the location of the body. For instance, for a vertical cylinder in surface gravity waves this requires that the diameter of the cylinder is much smaller than the wavelength.

  4. Darcy–Weisbach equation - Wikipedia

    en.wikipedia.org/wiki/Darcy–Weisbach_equation

    hide. In fluid dynamics, the Darcy–Weisbach equation is an empirical equation that relates the head loss, or pressure loss, due to friction along a given length of pipe to the average velocity of the fluid flow for an incompressible fluid. The equation is named after Henry Darcy and Julius Weisbach.

  5. Stokes stream function - Wikipedia

    en.wikipedia.org/wiki/Stokes_stream_function

    In fluid dynamics, the Stokes stream function is used to describe the streamlines and flow velocity in a three-dimensional incompressible flow with axisymmetry. A surface with a constant value of the Stokes stream function encloses a streamtube, everywhere tangential to the flow velocity vectors. Further, the volume flux within this streamtube ...

  6. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    In fluid mechanics, dynamic similarity is the phenomenon that when there are two geometrically similar vessels (same shape, different sizes) with the same boundary conditions (e.g., no-slip, center-line velocity) and the same Reynolds and Womersley numbers, then the fluid flows will be identical. This can be seen from inspection of the ...

  7. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    Hydrodynamic stability is a series of differential equations and their solutions. A bifurcation occurs when a small change in the parameters of the system causes a qualitative change in its behavior,. [ 1 ] The parameter that is being changed in the case of hydrodynamic stability is the Reynolds number.

  8. Vorticity equation - Wikipedia

    en.wikipedia.org/wiki/Vorticity_equation

    The term (ω ∙ ∇) u on the right-hand side describes the stretching or tilting of vorticity due to the flow velocity gradients. Note that (ω ∙ ∇) u is a vector quantity, as ω ∙ ∇ is a scalar differential operator, while ∇u is a nine-element tensor quantity. The term ω(∇ ∙ u) describes stretching of vorticity due to flow ...

  9. Volumetric flow rate - Wikipedia

    en.wikipedia.org/wiki/Volumetric_flow_rate

    Thermodynamics. In physics and engineering, in particular fluid dynamics, the volumetric flow rate (also known as volume flow rate, or volume velocity) is the volume of fluid which passes per unit time; usually it is represented by the symbol Q (sometimes ). It contrasts with mass flow rate, which is the other main type of fluid flow rate.