Search results
Results from the WOW.Com Content Network
Paramagnetism is a form of magnetism whereby some materials are weakly attracted by an externally applied magnetic field, and form internal, induced magnetic fields in the direction of the applied magnetic field. In contrast with this behavior, diamagnetic materials are repelled by magnetic fields and form induced magnetic fields in the ...
Paramagnetic nuclear magnetic resonance spectroscopy refers to nuclear magnetic resonance (NMR) spectroscopy of paramagnetic compounds. [1] [2] Although most NMR measurements are conducted on diamagnetic compounds, paramagnetic samples are also amenable to analysis and give rise to special effects indicated by a wide chemical shift range and broadened signals.
Magnetic susceptibility. Degree to which a material becomes magnetized in an applied magnetic field. In electromagnetism, the magnetic susceptibility (from Latin susceptibilis 'receptive'; denoted χ, chi) is a measure of how much a material will become magnetized in an applied magnetic field. It is the ratio of magnetization M (magnetic moment ...
In a paramagnetic system, that is, a system in which the magnetization vanishes without the influence of an external magnetic field, assuming some simplifying assumptions (such as the sample system being ellipsoidal), one can derive a few compact thermodynamic relations. [4]
Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei .
H {\displaystyle H} is the magnitude of the applied magnetic field (A/m), T {\displaystyle T} is absolute temperature (K), C {\displaystyle C} is a material-specific Curie constant (K). Pierre Curie discovered this relation, now known as Curie's law, by fitting data from experiment. It only holds for high temperatures and weak magnetic fields.
Ferromagnetic, paramagnetic, ferrimagnetic, and antiferromagnetic materials have different intrinsic magnetic moment structures. At a material's specific Curie temperature (T C), these properties change. The transition from antiferromagnetic to paramagnetic (or vice versa) occurs at the Néel temperature (T N), which is analogous to Curie ...
Van Vleck paramagnetism. In condensed matter and atomic physics, Van Vleck paramagnetism refers to a positive and temperature -independent contribution to the magnetic susceptibility of a material, derived from second order corrections to the Zeeman interaction. The quantum mechanical theory was developed by John Hasbrouck Van Vleck between the ...