Search results
Results from the WOW.Com Content Network
The specific heat of the human body calculated from the measured values of individual tissues is 2.98 kJ · kg−1 · °C−1. This is 17% lower than the earlier wider used one based on non measured values of 3.47 kJ · kg−1· °C−1. The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution ...
In heat transfer, the thermal conductivity of a substance, k, is an intensive property that indicates its ability to conduct heat. For most materials, the amount of heat conducted varies (usually non-linearly) with temperature. [1] Thermal conductivity is often measured with laser flash analysis. Alternative measurements are also established.
In thermodynamics, the heat transfer coefficient or film coefficient, or film effectiveness, is the proportionality constant between the heat flux and the thermodynamic driving force for the flow of heat (i.e., the temperature difference, ΔT ). It is used in calculating the heat transfer, typically by convection or phase transition between a ...
Aluminium hydroxide is amphoteric, i.e., it has both basic and acidic properties. Closely related are aluminium oxide hydroxide, AlO (OH), and aluminium oxide or alumina (Al2O3), the latter of which is also amphoteric. These compounds together are the major components of the aluminium ore bauxite. Aluminium hydroxide also forms a gelatinous ...
CRC. As quoted in an online version of: David R. Lide (ed), CRC Handbook of Chemistry and Physics, 84th Edition. CRC Press. Boca Raton, Florida, 2003; Section 4, Properties of the Elements and Inorganic Compounds; Heat Capacity of the Elements at 25 °C.
The heat transfer rate can be written using Newton's law of cooling as = (), where h is the heat transfer coefficient and A is the heat transfer surface area. Because heat transfer at the surface is by conduction, the same quantity can be expressed in terms of the thermal conductivity k:
Thermal conductivity and resistivity. The thermal conductivity of a material is a measure of its ability to conduct heat. It is commonly denoted by , , or and is measured in W·m −1 ·K −1. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.
In heat transfer analysis, thermal diffusivity is the thermal conductivity divided by density and specific heat capacity at constant pressure. [1] It is a measure of the rate of heat transfer inside a material. It has units of m 2 /s. Thermal diffusivity is usually denoted by lowercase alpha (α), but a, h, κ (kappa), [2] K, [3] , D, are also ...