Search results
Results from the WOW.Com Content Network
In this case, the array from which samples are taken is [2, 3, -1, -20, 5, 10]. In computer science, the maximum sum subarray problem, also known as the maximum segment sum problem, is the task of finding a contiguous subarray with the largest sum, within a given one-dimensional array A [1...n] of numbers. It can be solved in time and space.
The subset sum problem (SSP) is a decision problem in computer science. In its most general formulation, there is a multiset of integers and a target-sum , and the question is to decide whether any subset of the integers sum to precisely .[1] The problem is known to be NP-complete. Moreover, some restricted variants of it are NP-complete too ...
The multiple subset sum problem is an optimization problem in computer science and operations research. It is a generalization of the subset sum problem. The input to the problem is a multiset of n integers and a positive integer m representing the number of subsets. The goal is to construct, from the input integers, some m subsets.
A longest common subsequence (LCS) is the longest subsequence common to all sequences in a set of sequences (often just two sequences). It differs from the longest common substring: unlike substrings, subsequences are not required to occupy consecutive positions within the original sequences. The problem of computing longest common subsequences ...
The dashed line in green represents one of the minimum cuts of this graph, crossing only two edges. [1] In graph theory, a minimum cut or min-cut of a graph is a cut (a partition of the vertices of a graph into two disjoint subsets) that is minimal in some metric. Variations of the minimum cut problem consider weighted graphs, directed graphs ...
one of the longest increasing subsequences is. 0, 2, 6, 9, 11, 15. This subsequence has length six; the input sequence has no seven-member increasing subsequences. The longest increasing subsequence in this example is not the only solution: for instance, are other increasing subsequences of equal length in the same input sequence.
O ( n + k ) {\displaystyle O (n+k)} In computer science, counting sort is an algorithm for sorting a collection of objects according to keys that are small positive integers; that is, it is an integer sorting algorithm. It operates by counting the number of objects that possess distinct key values, and applying prefix sum on those counts to ...
Abel's theorem allows us to evaluate many series in closed form. For example, when we obtain by integrating the uniformly convergent geometric power series term by term on ; thus the series converges to by Abel's theorem. Similarly, converges to. is called the generating function of the sequence Abel's theorem is frequently useful in dealing ...